开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Archie · 2022年05月04日

计算

NO.PZ2016082402000001

问题如下:

An investor buys a Treasury bill maturing in one month for $987. On the maturity date the investor collects $1,000. Calculate effective annual rate (EAR).

选项:

A.

17.0%

B.

15.8%

C.

13.0%

D.

11.6%

解释:

ANSWER: A

The EAR is defined byFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^T . So (FVPV)1T1{(\frac{FV}{PV})}^\frac1T-1  EAR =  . Here, T = 1/12. So, EAR =   (1,000987)121=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%

老师请问一下,为什么这里不是1+12分之r,然后滚一次方来算呢

1 个答案

品职答疑小助手雍 · 2022年05月04日

同学你好,根据定义有效年利率是指在按照给定的计息期利率和每年复利次数计算利息时,能够产生相同结果的,每年复利一次的年利率。举例来说,某债券的名义年利率为10%,每年支付利息两次(年复利次数为2),则其有效年利率为多少?那么答案就是(1+10%/2)^2=1+EAR。

  • 1

    回答
  • 0

    关注
  • 373

    浏览
相关问题

NO.PZ2016082402000001 问题如下 investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR). A.17.0% B.15.8% C.13.0% 11.6% ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0% EAR和BEY在讲义的哪个地方,找不到了

2024-09-18 20:59 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%为什么不是(1+R/12)=1000/987

2023-02-24 23:11 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%您好,我是想ERA是年化利率,所以按照学习的内容,这么列的公式。是哪里理解的有偏差?

2022-05-19 23:06 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%一个月到期,不是说明一个月结一次么,一年就得是12次?

2022-05-19 22:20 1 · 回答