开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

HL · 2022年04月26日

请教这道题用计算器计算IRR

NO.PZ2017092702000029

问题如下:

A fund receives investments at the beginning of each year and generates returns as shown in the table.

Which return measure over the three-year period is negative?

选项:

A.

Geometric mean return

B.

Time-weighted rate of return

C.

Money-weighted rate of return

解释:

C is correct.

The money-weighted rate of return considers both the timing and amounts of investments into the fund. The investment at the beginning of Year 1 will be worth $1,000(1.15)(1.14)(0.96) = $1,258.56 at the end of Year 3. The investment made at the beginning of Year 2 will be worth $4,377.60 = $4,000(1.14)(0.96) at the end of Year 3. The investment of $45,000 at the beginning of Year 3 decreases to a value of $45,000 (0.96) = $43,200 at the end of Year 3. Solving for r,

1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}

results in r = –2.08%

Note that B is incorrect because the time-weighted rate of return (TWR) of the fund is the same as the geometric mean return of the fund and is thus positive: TWR = 3 (1.15) (1.14) (0.96) - 1 = 7.97%

第一种:CF0=-1000, CF1=-2850, CF2=-40440, CF3=43200 IRR=-2.22

第二种:CF0=1000, CF1=4000, CF2=45000, CF3=-48836.16 IRR=-2.08



哪一种方法是正确的?

第二种方法理解不了,而且48836.16是怎么来的?

5 个答案
已采纳答案

Kiko_品职助教 · 2022年04月27日

嗨,爱思考的PZer你好:


第二种是对的。CF3=((1000*(1.15)+4000)*(1.14)+45000)*(1-0.04)=48836

这道题这么理解会好一点:

因为题目说在每年年初收到投资者的资金,那么相当于CF0=-1000。

在计算器中“CF”里面录入以下数据(每一期的现金流):

CF0=-1000;CF1=-4000;CF2=-45000;CF3=((1000*(1.15)+4000)*(1.14)+45000)*(1-0.04)=48836

再直接计算 CPT IRR即可。

因为前几笔现金流都是投资者给别人钱,最后一笔是投资者收到钱,所以前面都是负号,后面是正号。

----------------------------------------------
努力的时光都是限量版,加油!

HL · 2022年04月27日

我天,仅仅知道Geometric mean 和 Time weighted rate 是一样的才蒙对了。这一课的习题里都是用第一种方法计算现金流,然后算IRR,而且都和答案匹配,这一道题为什么用第二种方法? 感觉基础班视频没有讲第二种方法,也没有见到过第二种方法的习题。这是什么情况?

HL · 2022年05月04日

讲的很清楚。题干是每年投资的钱,上课里的题是每年管理的钱,算法有差别。明白了,谢谢!

Kiko_品职助教 · 2022年05月04日

嗨,努力学习的PZer你好:


不客气~加油

----------------------------------------------
努力的时光都是限量版,加油!

Kiko_品职助教 · 2022年05月03日

嗨,努力学习的PZer你好:


这两种情况条件不一样。你贴图的意思是,一年之后账上是4000,所以我们从这个条件可以推断其实1时刻他投入的现金是2850。而这道题没有那么复杂,他直接给的就是投入的现金流。再好好体会一下~

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

HL · 2022年05月04日

谢谢,明白了!

HL · 2022年04月30日

这是视频课里教的方法,计算每一期现金流的方法,不对吗?


Kiko_品职助教 · 2022年04月28日

嗨,爱思考的PZer你好:


。。上面说的方法不是Money-weighted rate of return吗。是看每一期投入的现金流多少,没有明白你的第一种方法得现金流是怎么计算得呢

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

HL · 2022年04月30日

评论里不能贴图片,我写了一个回答贴上图片了。 我记得上课说CF0=-1000;CF1= -(4000 -1000*1.15)=-2850;CF2= -(45000 - 4000* 1.14)=-40440;CF3=45000*0.96=43200 CPT IRR = -2.224018 我记得视频课里讲的就是这个方法

  • 5

    回答
  • 0

    关注
  • 556

    浏览
相关问题

NO.PZ2017092702000029问题如下A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative?A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of returnC is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97%跟答案完全不一样?可以告知我这算的是啥吗。。。蒙的

2024-02-26 16:08 1 · 回答

NO.PZ2017092702000029 问题如下 A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative? A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of return C is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97% 计算器一直报error 5

2023-04-16 14:00 1 · 回答

NO.PZ2017092702000029 问题如下 A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative? A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of return C is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97% 为什么最后的CF3不是45000*-4%。最后的CF3不知道原因,没有看懂是怎么求出来的

2022-12-28 15:41 2 · 回答

NO.PZ2017092702000029 问题如下 A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative? A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of return C is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97% 为什么客户的收益是在最后一年的cashflow里,而不是在对应的cf1、cf2、cf3?

2022-12-16 06:03 1 · 回答