开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

幸运是努力带来的 · 2022年04月03日

为什么要折现

NO.PZ2018122701000042

问题如下:

An analyst is using the delta-normal method to determine the VaR of a fixed income portfolio. The portfolio contains a long position in 1-year bonds with a $1 million face value and a 6% coupon that is paid semi-annually. The interest rates on six-month and twelve-month maturity zero-coupon bonds are, respectively, 2% and 2.5%. Mapping the long position to standard positions in the six-month and twelve-month zeros, respectively, provides which of the following mapped positions?

选项:

A.

$30,000 and 1,030,000

B.

$29,500 and 975,610

C.

$29,703 and 1,004,878

D.

$30,300 and 1,035,000

解释:

C is correct.

考点 Mapping to Fixed Income Portfolios

解析 The long position is mapped into a combination of market values of the zero-coupon bonds that provide the same cash flows:

Xsix=300001+0.02/2=29703X_{six}=\frac{30000}{1+0.02/2}=29703

Xtwelve=10300001+0.025=1004878X_{twelve}=\frac{1030000}{1+0.025}=1004878

为什么A不对?为什么要折现? 折现之后是零起点的现值,为什么不是付息日和到期日的现金流?

1 个答案

品职答疑小助手雍 · 2022年04月03日

同学你好,本题相当于把债券看成两个零息债了,mapping是为了求var,是要通过价格对利率的敏感性来算var的,当然要折现求价格。

  • 1

    回答
  • 0

    关注
  • 295

    浏览
相关问题

NO.PZ2018122701000042问题如下 analyst is using the lta-normmethoto termine the Vof a fixeincome portfolio. The portfolio contains a long position in 1-yebon with a $1 million favalue ana 6% coupon this paisemi-annually. The interest rates on six-month antwelve-month maturity zero-coupon bon are, respectively, 2% an2.5%. Mapping the long position to stanrpositions in the six-month antwelve-month zeros, respectively, provis whiof the following mappepositions? $30,000 an1,030,000 $29,500 an975,610 $29,703 an1,004,878 $30,300 an1,035,000 C is correct. 考点 Mapping to FixeIncome Portfolios 解析 The long position is mappeinto a combination of market values of the zero-coupon bon thprovi the same cash flows: Xsix=300001+0.02/2=29703X_{six}=\frac{30000}{1+0.02/2}=29703Xsix​=1+0.02/230000​=29703Xtwelve=10300001+0.025=1004878X_{twelve}=\frac{1030000}{1+0.025}=1004878Xtwelve​=1+0.0251030000​=1004878 看不懂题目在说什么,要求是什么?什么是多头转换为标准?

2023-07-29 10:31 1 · 回答

NO.PZ2018122701000042 问题如下 analyst is using the lta-normmethoto termine the Vof a fixeincome portfolio. The portfolio contains a long position in 1-yebon with a $1 million favalue ana 6% coupon this paisemi-annually. The interest rates on six-month antwelve-month maturity zero-coupon bon are, respectively, 2% an2.5%. Mapping the long position to stanrpositions in the six-month antwelve-month zeros, respectively, provis whiof the following mappepositions? $30,000 an1,030,000 $29,500 an975,610 $29,703 an1,004,878 $30,300 an1,035,000 C is correct. 考点 Mapping to FixeIncome Portfolios 解析 The long position is mappeinto a combination of market values of the zero-coupon bon thprovi the same cash flows: Xsix=300001+0.02/2=29703X_{six}=\frac{30000}{1+0.02/2}=29703Xsix​=1+0.02/230000​=29703Xtwelve=10300001+0.025=1004878X_{twelve}=\frac{1030000}{1+0.025}=1004878Xtwelve​=1+0.0251030000​=1004878 The interest rates on six-month antwelve-month maturity zero-coupon bon are, respectively, 2% an2.5%. 折现第一笔现金流的时候,为什么不直接除以1.02呢。题目中给的2%是说的on six_month zero coupon bon所以这也是一年的利率吗,如果是半年的利率,那为什么还要除以(1+0.02/2)呢

2023-02-26 22:06 1 · 回答

NO.PZ2018122701000042 问题如下 analyst is using the lta-normmethoto termine the Vof a fixeincome portfolio. The portfolio contains a long position in 1-yebon with a $1 million favalue ana 6% coupon this paisemi-annually. The interest rates on six-month antwelve-month maturity zero-coupon bon are, respectively, 2% an2.5%. Mapping the long position to stanrpositions in the six-month antwelve-month zeros, respectively, provis whiof the following mappepositions? $30,000 an1,030,000 $29,500 an975,610 $29,703 an1,004,878 $30,300 an1,035,000 C is correct. 考点 Mapping to FixeIncome Portfolios 解析 The long position is mappeinto a combination of market values of the zero-coupon bon thprovi the same cash flows: Xsix=300001+0.02/2=29703X_{six}=\frac{30000}{1+0.02/2}=29703Xsix​=1+0.02/230000​=29703Xtwelve=10300001+0.025=1004878X_{twelve}=\frac{1030000}{1+0.025}=1004878Xtwelve​=1+0.0251030000​=1004878 本题1030000折现为什么不是除以[(1+2%/2)*(1+2.5%/2)]? 这和NO.PZ2020033001000022那道题两年现金流的折现计算的方式有什么不同?

2023-01-12 08:59 1 · 回答

NO.PZ2018122701000042问题如下 analyst is using the lta-normmethoto termine the Vof a fixeincome portfolio. The portfolio contains a long position in 1-yebon with a $1 million favalue ana 6% coupon this paisemi-annually. The interest rates on six-month antwelve-month maturity zero-coupon bon are, respectively, 2% an2.5%. Mapping the long position to stanrpositions in the six-month antwelve-month zeros, respectively, provis whiof the following mappepositions? $30,000 an1,030,000 $29,500 an975,610 $29,703 an1,004,878 $30,300 an1,035,000 C is correct. 考点 Mapping to FixeIncome Portfolios 解析 The long position is mappeinto a combination of market values of the zero-coupon bon thprovi the same cash flows: Xsix=300001+0.02/2=29703X_{six}=\frac{30000}{1+0.02/2}=29703Xsix​=1+0.02/230000​=29703Xtwelve=10300001+0.025=1004878X_{twelve}=\frac{1030000}{1+0.025}=1004878Xtwelve​=1+0.0251030000​=1004878 老师没有太理解为什么不是 除( 1+2·5% )的平方?

2022-09-16 00:05 2 · 回答

NO.PZ2018122701000042问题如下 analyst is using the lta-normmethoto termine the Vof a fixeincome portfolio. The portfolio contains a long position in 1-yebon with a $1 million favalue ana 6% coupon this paisemi-annually. The interest rates on six-month antwelve-month maturity zero-coupon bon are, respectively, 2% an2.5%. Mapping the long position to stanrpositions in the six-month antwelve-month zeros, respectively, provis whiof the following mappepositions? $30,000 an1,030,000 $29,500 an975,610 $29,703 an1,004,878 $30,300 an1,035,000 C is correct. 考点 Mapping to FixeIncome Portfolios 解析 The long position is mappeinto a combination of market values of the zero-coupon bon thprovi the same cash flows: Xsix=300001+0.02/2=29703X_{six}=\frac{30000}{1+0.02/2}=29703Xsix​=1+0.02/230000​=29703Xtwelve=10300001+0.025=1004878X_{twelve}=\frac{1030000}{1+0.025}=1004878Xtwelve​=1+0.0251030000​=1004878 这个题在算1年的时候,只算了一期的现金流,下图中的题在算1年期的现金流,算了2期的,请问如何判断?1.06*1.05是什么意思呢?

2022-07-18 23:55 1 · 回答