NO.PZ202112010200002202
问题如下:
What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 1.50% and returns are normally distributed?
选项:
A.$1,234,105
$2,468,210
$5,413,133
解释:
A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 1.50% yield volatility over 21 trading days equals 16 bps = (1.50% × 2.33 standard deviations × √21).
We can quantify the bond’s market value change by multiplying the familiar (–ModDur × ∆Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)).
我也和上一位同学一样,根号21 * 1.5% * 2.33 = 16%,不是16bp。何老师在经典题里也直接给出YTM的VAR是16bp的答案,没有细说。但是在基础班一模一样的例题,我用一样的运算能算出YTM的VAR是0.85%,这是正确答案,同样运算逻辑这道题我算的是16%而不是0.016%。是不是有什么细节要考虑。