开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

聂赫留朵夫 · 2022年03月19日

3级VAR

* 问题详情,请 查看题干

NO.PZ202112010200002202

问题如下:

What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 1.50% and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 1.50% yield volatility over 21 trading days equals 16 bps = (1.50% × 2.33 standard deviations × √21).

We can quantify the bond’s market value change by multiplying the familiar (–ModDur × ∆Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 (–9.887 × .0016)).

我也和上一位同学一样,根号21 * 1.5% * 2.33 = 16%,不是16bp。何老师在经典题里也直接给出YTM的VAR是16bp的答案,没有细说。但是在基础班一模一样的例题,我用一样的运算能算出YTM的VAR是0.85%,这是正确答案,同样运算逻辑这道题我算的是16%而不是0.016%。是不是有什么细节要考虑。

jiajia11 · 2022年03月20日

我上周也问了同样的问题,老师给的解答是根据Var的公式,于Var的单位应该与μ保持一致,μ是利率,单位是%,所以Var的单位也应该是%。计算结果为:-1.5%*21^(1/2)*2.33=-0.16,即-0.16的单位是% 那请问老师是不是基础班例题的0.85%需要修正? 谢谢

2 个答案
已采纳答案

pzqa015 · 2022年03月21日

嗨,努力学习的PZer你好:


不好意思同学,教研组老师重新讨论以后,发现题库这道题的答案不正确,就按照讲义这道题的解法来计算吧

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

聂赫留朵夫 · 2022年03月21日

好的谢谢老师解惑

pzqa015 · 2022年03月22日

嗨,努力学习的PZer你好:


加油

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 2

    回答
  • 4

    关注
  • 844

    浏览
相关问题

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 我记得学二级的时候我们计算99%的VaR用的是 μ - 2.33 σ, 本题计算中只用了2.33σ 去算,μ默认取0,这是什么原因?另外YTM这里为什么不用在计算中呢?谢谢老师~

2024-07-21 12:32 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 请问本题是做了修正吗?默认0.015% yielvolatility是针对y的,不是lta y/y 吗

2024-07-17 23:50 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 老师您好,我按照答案公式计算,得到的结果是$1,235,347。是不是协会把计算公式改了,答案没改?

2024-06-15 10:03 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 啥时候开始算VaR要算上price和ytm?VaR不是|μ-2.33×σ|×market value 吗我算的是 0.015%×√21×2.33×73million 答案跟A相近才选的A,但是不理解为什么解析里面要多乘上的价格和收益率。

2024-02-04 16:24 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 日度VaR,变成月度VaR,乘以根号21,是计算公式,没问题;日度VaR的计算公式里没有久期,所以,为什么要乘以久期?

2024-01-07 16:36 3 · 回答