开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

wqd57d · 2018年03月13日

问一道题:NO.PZ2017092702000007 [ CFA I ]

这道题不应该用n=4,i/y=3,pv=1000,pmt=0,求出年福利的fv是1125.5吗??

问题如下图:

选项:

A.

B.

C.

解释:

1 个答案

源_品职助教 · 2018年03月13日

这题一中计息方式是以每天复利的形式计息。

一个计息方式是连续复利计息。

无论上述哪一种都不是你的表达式,你所列的表达式是按照年的频率计息。

  • 1

    回答
  • 0

    关注
  • 451

    浏览
相关问题

NO.PZ2017092702000007 问题如下 Given a €1,000,000 investment for four years with a stateannurate of 3% compouncontinuously, the fferenin its interest earnings comparewith the same investment compounily is closest to: A.€1. B.€6. C.€455. B is correct. The fferenbetween continuous compounng anily compounng is€127,496.85 – €127,491.29 = €5.56, or ≈ €6, shown in the following calculations. With continuous compounng, the investment earns (where PV is present value) PVersN - PV = €1,000,000e0.03(4) – €1,000,000= €1,127,496.85 – €1,000,000 = €127,496.85 With ily compounng, the investment earns: €1,000,000(1 + 0.03/365)^365(4) – €1,000,000 = €1,127,491.29 – €1,000,000 = €127,491.29.根据不同的计息频率来计算两个利息。第一个是“.... compouncontinuously”,第二个是“ compounily”,分别计算出利息后做差即可。 我ily算出来是12.74%,连续复利是e的0.003*4=4.4228不知道哪里有问题。。。

2023-06-02 16:59 1 · 回答

NO.PZ2017092702000007 问题如下 Given a €1,000,000 investment for four years with a stateannurate of 3% compouncontinuously, the fferenin its interest earnings comparewith the same investment compounily is closest to: A.€1. B.€6. C.€455. B is correct. The fferenbetween continuous compounng anily compounng is€127,496.85 – €127,491.29 = €5.56, or ≈ €6, shown in the following calculations. With continuous compounng, the investment earns (where PV is present value) PVersN - PV = €1,000,000e0.03(4) – €1,000,000= €1,127,496.85 – €1,000,000 = €127,496.85 With ily compounng, the investment earns: €1,000,000(1 + 0.03/365)^365(4) – €1,000,000 = €1,127,491.29 – €1,000,000 = €127,491.29.根据不同的计息频率来计算两个利息。第一个是“.... compouncontinuously”,第二个是“ compounily”,分别计算出利息后做差即可。 老师,compounng continuously求fv,用计算机是不是n=4, i/y=3, pv=1,000,000 ,pmt=0, cpt fv?

2022-11-13 15:36 3 · 回答

NO.PZ2017092702000007 问题如下 Given a €1,000,000 investment for four years with a stateannurate of 3% compouncontinuously, the fferenin its interest earnings comparewith the same investment compounily is closest to: A.€1. B.€6. C.€455. B is correct. The fferenbetween continuous compounng anily compounng is€127,496.85 – €127,491.29 = €5.56, or ≈ €6, shown in the following calculations. With continuous compounng, the investment earns (where PV is present value) PVersN - PV = €1,000,000e0.03(4) – €1,000,000= €1,127,496.85 – €1,000,000 = €127,496.85 With ily compounng, the investment earns: €1,000,000(1 + 0.03/365)^365(4) – €1,000,000 = €1,127,491.29 – €1,000,000 = €127,491.29.根据不同的计息频率来计算两个利息。第一个是“.... compouncontinuously”,第二个是“ compounily”,分别计算出利息后做差即可。 compounily 计算器怎么按呢

2022-10-04 14:31 2 · 回答

NO.PZ2017092702000007 问题如下 Given a €1,000,000 investment for four years with a stateannurate of 3% compouncontinuously, the fferenin its interest earnings comparewith the same investment compounily is closest to: A.€1. B.€6. C.€455. B is correct. The fferenbetween continuous compounng anily compounng is€127,496.85 – €127,491.29 = €5.56, or ≈ €6, shown in the following calculations. With continuous compounng, the investment earns (where PV is present value) PVersN - PV = €1,000,000e0.03(4) – €1,000,000= €1,127,496.85 – €1,000,000 = €127,496.85 With ily compounng, the investment earns: €1,000,000(1 + 0.03/365)^365(4) – €1,000,000 = €1,127,491.29 – €1,000,000 = €127,491.29.根据不同的计息频率来计算两个利息。第一个是“.... compouncontinuously”,第二个是“ compounily”,分别计算出利息后做差即可。 請問1,000,000e0.03(4), 計算器如何按?謝謝

2022-09-24 00:57 1 · 回答

NO.PZ2017092702000007问题如下Given a €1,000,000 investment for four years with a stateannurate of 3% compouncontinuously, the fferenin its interest earnings comparewith the same investment compounily is closest to:A.€1.B.€6.C.€455. B is correct. The fferenbetween continuous compounng anily compounng is€127,496.85 – €127,491.29 = €5.56, or ≈ €6, shown in the following calculations. With continuous compounng, the investment earns (where PV is present value) PVersN - PV = €1,000,000e0.03(4) – €1,000,000= €1,127,496.85 – €1,000,000 = €127,496.85 With ily compounng, the investment earns: €1,000,000(1 + 0.03/365)^365(4) – €1,000,000 = €1,127,491.29 – €1,000,000 = €127,491.29.根据不同的计息频率来计算两个利息。第一个是“.... compouncontinuously”,第二个是“ compounily”,分别计算出利息后做差即可。 老师,请问这道题直接用两种情况的FV相减,也可以对吗?从而简化步骤

2022-09-01 11:39 1 · 回答