NO.PZ2019010402000022
问题如下:
Based on the following information, the value of the European-style interest rate call option is:
Assume the notional amount of the option is $1,000,000, the exercise rate is 2.6% and the RN probability is 50%.
选项:
A.2,368
B.2,529
C.3,675
解释:
B is correct.
考点:interest rate option估值
解析:
T=2:
c++ = Max(0,S++ – X) = Max[0,0.029833– 0.026] = 0.003833
c+– = Max(0,S+– – X) = Max[0,0.029378 – 0.026] = 0.003378
c– – = Max(0,S– – – X) = Max[0,0.015712 – 0.026] = 0.0
T=1:
T=0:
因为NP=1,000,000,所以call value=0.002529×1,000,000=2,529.17
在计算interest rate option value的时候,一定要特别注意折现率的选取。
这个利率两期看涨期权二叉树,给出来的话,是什么意思,我分不清这个现金流的问题,我算的话是
算出C++=2.9833%-2.6%=0.3833%,然后拿0.3833%/(1+2.9833%)=0.3722%,认为c++在t2时刻是=0.3722%,
但我这样算是错的,
答案是直接c++在t2==2.9833%-2.6%=0.3833%
疑问→为什么算c++不需要用t2的折现率去折现