开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

于彤昆 · 2018年03月08日

问一道题:NO.PZ201601200500000804 第4小题 [ CFA II ]

* 问题详情,请 查看题干

问题如下图:

    

选项:

A.

B.

C.

解释:


将T=1时刻算出的NPV向0时刻折现时,为什么不用0.5*40.361+0.5*(-74.820),谢谢!

1 个答案
已采纳答案

吴昊_品职助教 · 2018年03月09日

扩张期权是否行权取决于第一笔投资在t=1时刻的demand是不是high,只有在正的NPV的情况下才会行权,-78.820这种情况下是不会行权的。所以不需要加权平均,只需要将正的NPV折到0时刻,而且这种情况发生的概率是50%。


于彤昆 · 2018年03月09日

也就是说,一版可能是高CF,然后在这种情况下行权,考虑这个可能。但NPV为负就不会执行这个OPTION,所以不用?

吴昊_品职助教 · 2018年03月09日

对的,加油~

于彤昆 · 2018年03月09日

谢谢!

  • 1

    回答
  • 2

    关注
  • 447

    浏览
相关问题

NO.PZ201601200500000804 请问行权的时候不就是最优价值了吗?为什么最后还要加上没有option的原始NPV呢?谢谢!

2021-10-23 10:56 1 · 回答

NO.PZ201601200500000804 12.68. 31.03. B is correct. Assume we are time = 1. The NPV of the expansion (time 1) if manis \"high\" is NPV=−190+∑t=19401.10t=C$40.361millionNPV=-190+\sum_{t=1}^9\frac{40}{1.10^t}=C\$40.361millionNPV=−190+∑t=19​1.10t40​=C$40.361million The NPV of the expansion (time 1) if manis \"low\" is NPV=−190+∑t=19201.10t=‐C$74.820millionNPV=-190+\sum_{t=1}^9\frac{20}{1.10^t}=‐C\$74.820millionNPV=−190+∑t=19​1.10t20​=‐C$74.820million The optimcision is to expanif manis \"high\" annot expanif \"low.\" Because the expansion option is exerciseonly when its value is positive, whihappens 50 percent of the time, the expectevalue of the expansion project, time zero, is NPV=11.100.50(40.361)=C$18.346millionNPV=\frac1{1.10}0.50(40.361)=C\$18.346millionNPV=1.101​0.50(40.361)=C$18.346million The totNPV of the initiprojeanthe expansion projeis NPV = –C$5.663 million + C$18.346 million = C$12.683 million The optionexpansion project, haneoptimally, as sufficient value to make this a positive NPV project.请问老师,40/1.1^t t=9,这个计算器怎么按啊?还是要一个一个按,按9个?

2021-07-29 16:45 2 · 回答

NO.PZ201601200500000804 12.68. 31.03. B is correct. Assume we are time = 1. The NPV of the expansion (time 1) if manis \"high\" is NPV=−190+∑t=19401.10t=C$40.361millionNPV=-190+\sum_{t=1}^9\frac{40}{1.10^t}=C\$40.361millionNPV=−190+∑t=19​1.10t40​=C$40.361million The NPV of the expansion (time 1) if manis \"low\" is NPV=−190+∑t=19201.10t=‐C$74.820millionNPV=-190+\sum_{t=1}^9\frac{20}{1.10^t}=‐C\$74.820millionNPV=−190+∑t=19​1.10t20​=‐C$74.820million The optimcision is to expanif manis \"high\" annot expanif \"low.\" Because the expansion option is exerciseonly when its value is positive, whihappens 50 percent of the time, the expectevalue of the expansion project, time zero, is NPV=11.100.50(40.361)=C$18.346millionNPV=\frac1{1.10}0.50(40.361)=C\$18.346millionNPV=1.101​0.50(40.361)=C$18.346million The totNPV of the initiprojeanthe expansion projeis NPV = –C$5.663 million + C$18.346 million = C$12.683 million The optionexpansion project, haneoptimally, as sufficient value to make this a positive NPV project.为何不是在0时刻看,有两种情况 需求低,只投了190,不追加投资,npv为负 追加投资190,需求高,npv为正然后将两种情况各0.5加权求和?现在答案只考虑了第二种情况加权0.5,为何不第一种情况也加权0.5加在一起呢

2021-04-17 16:10 1 · 回答

为什么现金流要乘以0.5呢?即使PROBABILITY是50%,但是这个不是应该假设已经是OPTIMAL了吗,为什么还需要考虑概率。谢谢!

2020-06-04 11:09 1 · 回答

12.68. 31.03. B is correct. Assume we are time = 1. The NPV of the expansion (time 1) if manis \"high\" is NPV=−190+∑t=19401.10t=C$40.361millionNPV=-190+\sum_{t=1}^9\frac{40}{1.10^t}=C\$40.361millionNPV=−190+∑t=19​1.10t40​=C$40.361million The NPV of the expansion (time 1) if manis \"low\" is NPV=−190+∑t=19201.10t=‐C$74.820millionNPV=-190+\sum_{t=1}^9\frac{20}{1.10^t}=‐C\$74.820millionNPV=−190+∑t=19​1.10t20​=‐C$74.820million The optimcision is to expanif manis \"high\" annot expanif \"low.\" Because the expansion option is exerciseonly when its value is positive, whihappens 50 percent of the time, the expectevalue of the expansion project, time zero, is NPV=11.100.50(40.361)=C$18.346millionNPV=\frac1{1.10}0.50(40.361)=C\$18.346millionNPV=1.101​0.50(40.361)=C$18.346million The totNPV of the initiprojeanthe expansion projeis NPV = –C$5.663 million + C$18.346 million = C$12.683 million The optionexpansion project, haneoptimally, as sufficient value to make this a positive NPV project.扩张项目的PVCF1已经得出,为什么折现一期的PV就是NPV?能不能用老师说的画图作差法再一下?

2020-03-30 06:03 1 · 回答