开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Emmmmmmmua · 2022年02月01日

可以用连续复利算吗

NO.PZ2016082402000001

问题如下:

An investor buys a Treasury bill maturing in one month for $987. On the maturity date the investor collects $1,000. Calculate effective annual rate (EAR).

选项:

A.

17.0%

B.

15.8%

C.

13.0%

D.

11.6%

解释:

ANSWER: A

The EAR is defined byFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^T . So (FVPV)1T1{(\frac{FV}{PV})}^\frac1T-1  EAR =  . Here, T = 1/12. So, EAR =   (1,000987)121=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%

请问这道题如果用连续复利算,

EAR是不是等于ln(1000/987) * 12 = 15.702%

1 个答案

李坏_品职助教 · 2022年02月04日

嗨,爱思考的PZer你好:


理论上连续复利算出来和离散复利算出来的结果应该不影响做题,但是这道题比较老了,误差有点大。建议还是用离散的公式。


在考试中不会给这种误差太大的题型的

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 1

    回答
  • 0

    关注
  • 382

    浏览
相关问题

NO.PZ2016082402000001 问题如下 investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR). A.17.0% B.15.8% C.13.0% 11.6% ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0% EAR和BEY在讲义的哪个地方,找不到了

2024-09-18 20:59 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%为什么不是(1+R/12)=1000/987

2023-02-24 23:11 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%您好,我是想ERA是年化利率,所以按照学习的内容,这么列的公式。是哪里理解的有偏差?

2022-05-19 23:06 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%一个月到期,不是说明一个月结一次么,一年就得是12次?

2022-05-19 22:20 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%老师请问一下,为什么这里不是1+12分之r,然后滚一次方来算呢

2022-05-04 03:50 1 · 回答