开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Ericawy · 2018年03月04日

问一道题:NO.PZ2015122802000166 [ CFA I ]

如果计算器中CF0=0的话,得出结果和答案中一样。D1是根据D0=1.6求出,我的问题是 既然D0是1.6,是存在的,为什么在计算器输入中CF0是0而不是1.6

问题如下图:

    

选项:

A.

B.

C.

解释:



1 个答案

maggie_品职助教 · 2018年03月05日

折现模型的原理(DDM)是把未来每一期预测的现金流(股利)进行折现,折到零时刻所得到的价值。


未来预测的现金流不包含零时刻已知的现金流。加油。


Ericawy · 2018年03月05日

好的 多谢老师

  • 1

    回答
  • 0

    关注
  • 359

    浏览
相关问题

NO.PZ2015122802000166 问题如下 analyst gathers or estimates the following information about a stock:Baseon a vinscount mol, the stois most likely: A.unrvalue B.fairly value C.overvalue is correct.The current priof €22.56 is less ththe intrinsic value (V0) of €24.64; therefore, the stoappears to currently unrvalue Accorng to the two-stage vinscount mol:V0=∑t=1n(1+gs)t(1+r)t+Vn(1+r)nV_0=\sum_{t=1}^n\frac{{\splaystyle 0(1+g_s)}^t}{{\splaystyle(1+r)}^t}+\frac{V_n}{{(1+r)}^n}V0​=∑t=1n​(1+r)t​(1+gs​)t​+(1+r)nVn​​ anVn=+1r−gLV_n=\frac{{n+1}}{r-g_L}Vn​=r−gL​+1​​+1 = (1+gS)n(1+gL) = €1.60 × 1.09 = €1.744 = €1.60 × (1.09)2 = €1.901 = €1.60 × (1.09)3 = €2.072 = €1.60 × (1.09)4 = €2.259 = [€1.60 × (1.09)4](1.04) = €2.349V4 = €2.349/(0.12 – 0.04) = €29.363V0=1.744(1.12)1+1.901(1.12)2+2.072(1.12)3+2.259(1.12)4+29.363(1.12)4V_0=\frac{1.744}{{(1.12)}^1}+\frac{1.901}{{(1.12)}^2}+\frac{2.072}{{(1.12)}^3}+\frac{2.259}{{(1.12)}^4}+\frac{29.363}{{(1.12)}^4}V0​=(1.12)11.744​+(1.12)21.901​+(1.12)32.072​+(1.12)42.259​+(1.12)429.363​ = 1.557+1.515+1.475+1.436+18.661 = €24.64(whiis greater ththe current priof €22.56)考点Multi-stage Mol计算器具体步奏如下CFO=0, C01=1.744,F01=1,C02=1.901,F02=1,C03=2.072,F03=1,C04=2.259+29.363,F04=1,NPV , I=12,CPT NPV 此题V4是用什么公式算的?为什么不用讲义P495页求P的公式?求V4,我下方的算法有问题吗?这一类题的解题思路,李老师根本没讲清楚。

2024-08-10 18:02 1 · 回答

NO.PZ2015122802000166 问题如下 analyst gathers or estimates the following information about a stock:Baseon a vinscount mol, the stois most likely: A.unrvalue B.fairly value C.overvalue is correct.The current priof €22.56 is less ththe intrinsic value (V0) of €24.64; therefore, the stoappears to currently unrvalue Accorng to the two-stage vinscount mol:V0=∑t=1n(1+gs)t(1+r)t+Vn(1+r)nV_0=\sum_{t=1}^n\frac{{\splaystyle 0(1+g_s)}^t}{{\splaystyle(1+r)}^t}+\frac{V_n}{{(1+r)}^n}V0​=∑t=1n​(1+r)t​(1+gs​)t​+(1+r)nVn​​ anVn=+1r−gLV_n=\frac{{n+1}}{r-g_L}Vn​=r−gL​+1​​+1 = (1+gS)n(1+gL) = €1.60 × 1.09 = €1.744 = €1.60 × (1.09)2 = €1.901 = €1.60 × (1.09)3 = €2.072 = €1.60 × (1.09)4 = €2.259 = [€1.60 × (1.09)4](1.04) = €2.349V4 = €2.349/(0.12 – 0.04) = €29.363V0=1.744(1.12)1+1.901(1.12)2+2.072(1.12)3+2.259(1.12)4+29.363(1.12)4V_0=\frac{1.744}{{(1.12)}^1}+\frac{1.901}{{(1.12)}^2}+\frac{2.072}{{(1.12)}^3}+\frac{2.259}{{(1.12)}^4}+\frac{29.363}{{(1.12)}^4}V0​=(1.12)11.744​+(1.12)21.901​+(1.12)32.072​+(1.12)42.259​+(1.12)429.363​ = 1.557+1.515+1.475+1.436+18.661 = €24.64(whiis greater ththe current priof €22.56)考点Multi-stage Mol计算器具体步奏如下CFO=0, C01=1.744,F01=1,C02=1.901,F02=1,C03=2.072,F03=1,C04=2.259+29.363,F04=1,NPV , I=12,CPT NPV 请问V4的分母是应该是的数值还是(1+4%)?

2024-01-19 11:42 2 · 回答

NO.PZ2015122802000166问题如下analyst gathers or estimates the following information about a stock:Baseon a vinscount mol, the stois most likely:A.unrvalueB.fairly valueC.overvalue is correct.The current priof €22.56 is less ththe intrinsic value (V0) of €24.64; therefore, the stoappears to currently unrvalue Accorng to the two-stage vinscount mol:V0=∑t=1n(1+gs)t(1+r)t+Vn(1+r)nV_0=\sum_{t=1}^n\frac{{\splaystyle 0(1+g_s)}^t}{{\splaystyle(1+r)}^t}+\frac{V_n}{{(1+r)}^n}V0​=∑t=1n​(1+r)t​(1+gs​)t​+(1+r)nVn​​ anVn=+1r−gLV_n=\frac{{n+1}}{r-g_L}Vn​=r−gL​+1​​+1 = (1+gS)n(1+gL) = €1.60 × 1.09 = €1.744 = €1.60 × (1.09)2 = €1.901 = €1.60 × (1.09)3 = €2.072 = €1.60 × (1.09)4 = €2.259 = [€1.60 × (1.09)4](1.04) = €2.349V4 = €2.349/(0.12 – 0.04) = €29.363V0=1.744(1.12)1+1.901(1.12)2+2.072(1.12)3+2.259(1.12)4+29.363(1.12)4V_0=\frac{1.744}{{(1.12)}^1}+\frac{1.901}{{(1.12)}^2}+\frac{2.072}{{(1.12)}^3}+\frac{2.259}{{(1.12)}^4}+\frac{29.363}{{(1.12)}^4}V0​=(1.12)11.744​+(1.12)21.901​+(1.12)32.072​+(1.12)42.259​+(1.12)429.363​ = 1.557+1.515+1.475+1.436+18.661 = €24.64(whiis greater ththe current priof €22.56)考点Multi-stage Mol计算器具体步奏如下CFO=0, C01=1.744,F01=1,C02=1.901,F02=1,C03=2.072,F03=1,C04=2.259+29.363,F04=1,NPV , I=12,CPT NPV 老师请问怎么判断题目给的1.6是还是啊?

2023-03-28 23:40 1 · 回答

NO.PZ2015122802000166 老师,最后第五年的计算不太明白,课堂上的也没听明白,能不能麻烦讲一下,谢谢!

2021-12-23 15:07 3 · 回答

NO.PZ2015122802000166 fairly value overvalue A is correct. The current priof €22.56 is less ththe intrinsic value (V0) of €24.64; therefore, the stoappears to currently unrvalue Accorng to the two-stage vinscount mol: V0=∑t=1n(1+gs)t(1+r)t+Vn(1+r)nV_0=\sum_{t=1}^n\frac{{\splaystyle 0(1+g_s)}^t}{{\splaystyle(1+r)}^t}+\frac{V_n}{{(1+r)}^n}V0​=∑t=1n​(1+r)t​(1+gs​)t​+(1+r)nVn​​ anVn=+1r−gLV_n=\frac{{n+1}}{r-g_L}Vn​=r−gL​+1​​ +1 = (1+gS)n(1+gL) = €1.60 × 1.09 = €1.744 = €1.60 × (1.09)2 = €1.901 = €1.60 × (1.09)3 = €2.072 = €1.60 × (1.09)4 = €2.259 = [€1.60 × (1.09)4](1.04) = €2.349 V4 = €2.349/(0.12 – 0.04) = €29.363 V0=1.744(1.12)1+1.901(1.12)2+2.072(1.12)3+2.259(1.12)4+29.363(1.12)4V_0=\frac{1.744}{{(1.12)}^1}+\frac{1.901}{{(1.12)}^2}+\frac{2.072}{{(1.12)}^3}+\frac{2.259}{{(1.12)}^4}+\frac{29.363}{{(1.12)}^4}V0​=(1.12)11.744​+(1.12)21.901​+(1.12)32.072​+(1.12)42.259​+(1.12)429.363​ = 1.557+1.515+1.475+1.436+18.661 = €24.64(whiis greater ththe current priof €22.56) 考点Multi-stage Mol 计算器具体步奏如下 CFO=0, C01=1.744,F01=1,C02=1.901,F02=1,C03=2.072,F03=1,C04=2.259+29.363,F04=1,NPV , I=12,CPT NPV 可以算到➕P5么

2021-06-07 00:07 1 · 回答