开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

dannyni · 2021年10月17日

不太懂这题的考点

NO.PZ2018122701000049

问题如下:

A portfolio consists of options on Microsoft and AT&T. The options on Microsoft have a delta of 1000, and the options on AT&T have a delta of 20000. The Microsoft share price is $120, and the AT&T share price is $30. Assuming that the daily volatility of Microsoft is 2% and the daily volatility of AT&T is 1% and the correlation between the daily changes is 0.3, the 5-day 95% VaR is

选项:

A.

26193

B.

25193

C.

27193

D.

24193

解释:

A is correct.

考点:Mapping to Option Position

解析:VaRMic= 1.65 × 2% × 120 × 1000 = 3960

VaRAT&T= 1.65 × 1% × 30 × 20000=9900

VARP(5day,95%)=39602+99002+2×0.3×3960×9900×5=26193VAR_{P(5-day,95\%)}=\sqrt{3960^2+9900^2+2\times0.3\times3960\times9900}\times\sqrt5=26193

var(dp)=-d*p*var(dy) 为什么答案里是要乘以SIGMA呢?

3 个答案

李坏_品职助教 · 2021年10月24日

嗨,从没放弃的小努力你好:


公式问题:第一个公式就是我们计算单一资产或者资产组合的VAR的delta-normal计算公式。如果是计算资产组合,需要把sigma换成portfolio的标准差。第二个公式是收益率波动的时候,债券价格变化多少,正确的写法是:△P/P = -duration * △r (也可以用△Y表示收益率变化量,这个公式和VaR没有任何关系)


计算porfolio的VaR我们有两种计算方法:

  1. 先按照Portfolio的sigma的公式 求出来资产组合的sigma, 然后用公式-μ + z*sigma求出porrfolio的VaR .
  2. 按照答案里的方法, VaR_Mic和Var_AT&T。然后再组合起来。这里是直接对VaR进行组合,不需要再去考虑sigma。单独的VaR本身已经包含了sigma了

----------------------------------------------
努力的时光都是限量版,加油!

dannyni · 2021年10月23日

还有个问题求组合的时候,为什么公式中的sigma都不乘了呢?原先组合公式不是应该square(w1sigma1+w2sigma2+2w1w2sigma1sigma2rho)? 另外,单一组合算出来的var为何能够当成weight呢? 谢谢

李坏_品职助教 · 2021年10月18日

嗨,努力学习的PZer你好:


这个题的思路是先求出来两只股票各自单独的value at risk: VaR_Mic和Var_AT&T。然后再用计算portfolio VaR的方法,类似于计算Porfolio的标准差。


单一资产的VaR,用delta-normal的公式应该是= Z * sigma * √t * 资产额度。




----------------------------------------------
加油吧,让我们一起遇见更好的自己!

dannyni · 2021年10月23日

想问下老师,这几个var的公式有什么区别呢1)normal VAR=-u+z*sigma 2)deltanormal:deltaP=duration*p*deltaY;但老师给的deltanormal又是不包含duration的 求解答,谢谢

dannyni · 2021年10月23日

还有个问题求组合的时候,为什么公式中的sigma都不乘了呢?原先组合公式不是应该square(w1sigma1+w2sigma2+2w1w2sigma1sigma2rho)? 另外,单一组合算出来的var为何能够当成weight呢? 谢谢

  • 3

    回答
  • 1

    关注
  • 622

    浏览
相关问题

NO.PZ2018122701000049问题如下 A portfolio consists of options on Microsoft and AT&T. The options on Microsoft have a lta of 1000, anthe options on AT&T have a lta of 20000. The Microsoft share priis $120, anthe AT&T share priis $30. Assuming ththe ily volatility of Microsoft is 2% anthe ily volatility of AT&T is 1% anthe correlation between the ily changes is 0.3, the 5-y 95% Vis 26193 25193 27193 24193 A is correct. 考点Mapping to Option Position 解析VaRMi1.65 × 2% × 120 × 1000 = 3960 VaRT= 1.65 × 1% × 30 × 20000=9900 VARP(5−y,95%)=39602+99002+2×0.3×3960×9900×5=26193VAR_{P(5-y,95\%)}=\sqrt{3960^2+9900^2+2\times0.3\times3960\times9900}\times\sqrt5=26193VARP(5−y,95%)​=39602+99002+2×0.3×3960×9900​×5​=26193 能详细讲下原理吗?两个var的组合求法在哪讲的呀?还有就是为啥是乘根号5啊?

2024-03-18 16:13 3 · 回答

NO.PZ2018122701000049 问题如下 A portfolio consists of options on Microsoft and AT&T. The options on Microsoft have a lta of 1000, anthe options on AT&T have a lta of 20000. The Microsoft share priis $120, anthe AT&T share priis $30. Assuming ththe ily volatility of Microsoft is 2% anthe ily volatility of AT&T is 1% anthe correlation between the ily changes is 0.3, the 5-y 95% Vis 26193 25193 27193 24193 A is correct. 考点Mapping to Option Position 解析VaRMi1.65 × 2% × 120 × 1000 = 3960 VaRT= 1.65 × 1% × 30 × 20000=9900 VARP(5−y,95%)=39602+99002+2×0.3×3960×9900×5=26193VAR_{P(5-y,95\%)}=\sqrt{3960^2+9900^2+2\times0.3\times3960\times9900}\times\sqrt5=26193VARP(5−y,95%)​=39602+99002+2×0.3×3960×9900​×5​=26193 如题

2024-03-05 03:51 1 · 回答

NO.PZ2018122701000049 问题如下 A portfolio consists of options on Microsoft and AT&T. The options on Microsoft have a lta of 1000, anthe options on AT&T have a lta of 20000. The Microsoft share priis $120, anthe AT&T share priis $30. Assuming ththe ily volatility of Microsoft is 2% anthe ily volatility of AT&T is 1% anthe correlation between the ily changes is 0.3, the 5-y 95% Vis 26193 25193 27193 24193 A is correct. 考点Mapping to Option Position 解析VaRMi1.65 × 2% × 120 × 1000 = 3960 VaRT= 1.65 × 1% × 30 × 20000=9900 VARP(5−y,95%)=39602+99002+2×0.3×3960×9900×5=26193VAR_{P(5-y,95\%)}=\sqrt{3960^2+9900^2+2\times0.3\times3960\times9900}\times\sqrt5=26193VARP(5−y,95%)​=39602+99002+2×0.3×3960×9900​×5​=26193 最后portfoli的var不可以先算出来分别的var, 然后用组合的var再乘以1.65吗再乘以根号5?我用这个方法算了结果不一样

2023-07-21 23:08 1 · 回答

NO.PZ2018122701000049 问题如下 A portfolio consists of options on Microsoft and AT&T. The options on Microsoft have a lta of 1000, anthe options on AT&T have a lta of 20000. The Microsoft share priis $120, anthe AT&T share priis $30. Assuming ththe ily volatility of Microsoft is 2% anthe ily volatility of AT&T is 1% anthe correlation between the ily changes is 0.3, the 5-y 95% Vis 26193 25193 27193 24193 A is correct. 考点Mapping to Option Position 解析VaRMi1.65 × 2% × 120 × 1000 = 3960 VaRT= 1.65 × 1% × 30 × 20000=9900 VARP(5−y,95%)=39602+99002+2×0.3×3960×9900×5=26193VAR_{P(5-y,95\%)}=\sqrt{3960^2+9900^2+2\times0.3\times3960\times9900}\times\sqrt5=26193VARP(5−y,95%)​=39602+99002+2×0.3×3960×9900​×5​=26193 和讲义上的公式不一样,能否请老师讲答案公式每一项对应的数值含义说明一下,谢谢

2023-04-30 21:34 1 · 回答

NO.PZ2018122701000049 问题如下 A portfolio consists of options on Microsoft and AT&T. The options on Microsoft have a lta of 1000, anthe options on AT&T have a lta of 20000. The Microsoft share priis $120, anthe AT&T share priis $30. Assuming ththe ily volatility of Microsoft is 2% anthe ily volatility of AT&T is 1% anthe correlation between the ily changes is 0.3, the 5-y 95% Vis 26193 25193 27193 24193 A is correct. 考点Mapping to Option Position 解析VaRMi1.65 × 2% × 120 × 1000 = 3960 VaRT= 1.65 × 1% × 30 × 20000=9900 VARP(5−y,95%)=39602+99002+2×0.3×3960×9900×5=26193VAR_{P(5-y,95\%)}=\sqrt{3960^2+9900^2+2\times0.3\times3960\times9900}\times\sqrt5=26193VARP(5−y,95%)​=39602+99002+2×0.3×3960×9900​×5​=26193 老师您好,我能明白题目的解法。但是在做的时候,我突然想尝试用miu ≠ 0 的那种带权重的方式求解。这里的权重应该怎么计算呢。麻烦老师解答。我的直觉是用金额直接放进去算,但是好像又不太对

2023-04-26 20:50 2 · 回答