开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

wuzx · 2021年08月22日

请问这个题目用的公式在讲义那页?

NO.PZ2016062402000022

问题如下:

A portfolio manager is interested in the systematic risk of a stock portfolio, so he estimates the linear regression: RPtRF=αP+βP[RMtRF]+εPtR_{Pt}-R_F=\alpha_P+\beta_P{\lbrack R_{Mt}-R_F\rbrack}+\varepsilon_{Pt},where RPtR_{Pt} is the return of the portfolio at time t, RMtR_{Mt} is the return of the market portfolio at time t, and RFR_F is the risk-free rate, which is constant over time. Suppose that α = 0.008, β = 0.977, σ(RP)\sigma{(R_P)} = 0.167, and σ(RM)\sigma{(R_M)} = 0.156.

What is the approximate coefficient of determination in this regression?

选项:

A.

0.913

B.

0.834

C.

0.977

D.

0.955

解释:

the R-squared is given by β2σM2σP2=0.9772×0.15620.1672=0.83\frac{\beta^2\sigma_M^2}{\sigma_P^2}=0.977^2\times\frac{0.156^2}{0.167^2}=0.83

请问这个题目用的公式在讲义那页?
1 个答案

李坏_品职助教 · 2021年08月22日

嗨,从没放弃的小努力你好:


讲义没有给出直接从beta去计算R^2的公式,但是可以这样来理解这道题目:


题目是一元线性回归,R^2就等于相关系数ρ^2。

而β = ρ * (σp / σm),我们把beta平方之后再乘以σm^2,除以σp的平方,就只剩下ρ^2了,也就是R^2


关于β的计算公式可以参考讲义P196页的例题。

----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 1

    关注
  • 464

    浏览
相关问题

NO.PZ2016062402000022问题如下 A portfolio manager is interestein the systematic risk of a stoportfolio, so he estimates the lineregression: RPt−RF=αP+βP[RMt−RF]+εPtR_{Pt}-R_F=\alpha_P+\beta_P{\lbraR_{Mt}-R_F\rbrack}+\varepsilon_{Pt}RPt​−RF​=αP​+βP​[RMt​−RF​]+εPt​,where RPtR_{Pt}RPt​ is the return of the portfolio time t, RMtR_{Mt}RMt​ is the return of the market portfolio time t, anRFR_FRF​ is the risk-free rate, whiis constant over time. Suppose thα = 0.008, β = 0.977, σ(RP)\sigma{(R_P)}σ(RP​) = 0.167, anσ(RM)\sigma{(R_M)}σ(RM​) = 0.156.Whis the approximate coefficient of termination in this regression? 0.913 0.834 0.977 0.955 the R-squareis given β2σM2σP2=0.9772×0.15620.1672=0.83\frac{\beta^2\sigma_M^2}{\sigma_P^2}=0.977^2\times\frac{0.156^2}{0.167^2}=0.83σP2​β2σM2​​=0.9772×0.16720.1562​=0.83 决策系数怎么就是拟合优度了?

2023-03-21 11:10 1 · 回答

NO.PZ2016062402000022问题如下 A portfolio manager is interestein the systematic risk of a stoportfolio, so he estimates the lineregression: RPt−RF=αP+βP[RMt−RF]+εPtR_{Pt}-R_F=\alpha_P+\beta_P{\lbraR_{Mt}-R_F\rbrack}+\varepsilon_{Pt}RPt​−RF​=αP​+βP​[RMt​−RF​]+εPt​,where RPtR_{Pt}RPt​ is the return of the portfolio time t, RMtR_{Mt}RMt​ is the return of the market portfolio time t, anRFR_FRF​ is the risk-free rate, whiis constant over time. Suppose thα = 0.008, β = 0.977, σ(RP)\sigma{(R_P)}σ(RP​) = 0.167, anσ(RM)\sigma{(R_M)}σ(RM​) = 0.156.Whis the approximate coefficient of termination in this regression? 0.913 0.834 0.977 0.955 the R-squareis given β2σM2σP2=0.9772×0.15620.1672=0.83\frac{\beta^2\sigma_M^2}{\sigma_P^2}=0.977^2\times\frac{0.156^2}{0.167^2}=0.83σP2​β2σM2​​=0.9772×0.16720.1562​=0.83 请问这个公式源自哪里

2022-11-17 15:57 1 · 回答

NO.PZ2016062402000022 0.834 0.977 0.955 the R-squareis given β2σM2σP2=0.9772×0.15620.1672=0.83\frac{\beta^2\sigma_M^2}{\sigma_P^2}=0.977^2\times\frac{0.156^2}{0.167^2}=0.83σP2​β2σM2​​=0.9772×0.16720.1562​=0.83 老师,R-square的英文表述是coefficient  of termination,那r(xy)呢?

2022-03-29 07:58 1 · 回答

NO.PZ2016062402000022 0.834 0.977 0.955 the R-squareis given β2σM2σP2=0.9772×0.15620.1672=0.83\frac{\beta^2\sigma_M^2}{\sigma_P^2}=0.977^2\times\frac{0.156^2}{0.167^2}=0.83σP2​β2σM2​​=0.9772×0.16720.1562​=0.83 p是coefficient 那coefficient termination就代表p的平方吗

2022-01-16 13:42 1 · 回答