开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

丁洁Amy · 2021年05月22日

关于statementII里面的similarity的理解

* 问题详情,请 查看题干

NO.PZ201512020300000506

问题如下:

Comparing two ML models that could be used to accomplish Step 3, which statement(s) best describe(s) the advantages of using Classification and Regression Trees (CART) instead of K-Nearest Neighbor (KNN)?

Statement I For CART there is no requirement to specify an initial hyperparameter (like K)

Statement II For CART there is no requirement to specify a similarity (or distance) measure

Statement III For CART the output provides a visual explanation for the prediction

选项:

A.

Statement I only

B.

Statement III only

C.

Statements I, II and III

解释:

C is correct. The advantages of using CART over KNN to classify companies into two categories (“not acquisition target” and “acquisition target”), include all of the following: For CART there are no requirements to specify an initial hyperparameter (like K) or a similarity (or distance) measure as with KNN, and CART provides a visual explanation for the prediction (i.e., the feature variables and their cut-off values at each node).
A is incorrect, because CART provides all of the advantages indicated in Statements I, II and III.

B is incorrect, because CART provides all of the advantages indicated in Statements I, II and III.

老师好,


这道题statement I我是纠结了一下,因为对CART来说,可以设定一些超参数,也可以不用。所以我没判断出来到底是对是错。然后就去看了StatementII这个结论。

在StatementII里面,它说CART没有对similarity和distance的设定,我就在想,咱们CART里的root node和decision node,不都是用的是similarity吗?比如"ROE>10?"作为一个node下面有两个分支。其实在我看来就是一种similarity的设定。我是哪里又理解错了吗? (总感觉我和出题人的思路总是不一样,哎><) 谢谢老师

1 个答案

星星_品职助教 · 2021年05月22日

同学你好,

similarity是根据距离衡量是否相似的概念。例如KNN算法,就要算出来距离,然后根据距离来判断要被分类的值和谁更接近。

CART中的node是节点的意思,在这个节点上设置cutoff value,例如"ROE>10",这里面不需要去计算出一个距离,也不需要判断采用哪种距离的算法(例如是否采用欧式距离)

这种算法里的问题都属于定义性质的问题,定义成什么就是什么,掌握一下就可以。

  • 1

    回答
  • 2

    关注
  • 544

    浏览
相关问题

NO.PZ201512020300000506 Statement I only Statement III only Statements I, II anIII C is correct. The aantages of using CART over KNN to classify companies into two categories (“not acquisition target” an“acquisition target”), inclu all of the following: For CART there are no requirements to specify initihyperparameter (like K) or a similarity (or stance) measure with KNN, anCART provis a visuexplanation for the prection (i.e., the feature variables antheir cut-off values eano). A is incorrect, because CART provis all of the aantages incatein Statements I, II anIII. B is incorrect, because CART provis all of the aantages incatein Statements I, II anIII. 为什么称其为cart对比的优点

2021-03-17 15:16 2 · 回答

Statement I only Statement III only Statements I, II anIII C is correct. The aantages of using CART over KNN to classify companies into two categories (“not acquisition target” an“acquisition target”), inclu all of the following: For CART there are no requirements to specify initihyperparameter (like K) or a similarity (or stance) measure with KNN, anCART provis a visuexplanation for the prection (i.e., the feature variables antheir cut-off values eano). A is incorrect, because CART provis all of the aantages incatein Statements I, II anIII. B is incorrect, because CART provis all of the aantages incatein Statements I, II anIII. CART法不是为了防止overfitting的问题,可以有两种方法,一种是事前设定regularization parameters,还有一种是事后pruning。第一种不就是事前先设参数吗?为什么这个题说,事前不用设hyperparameter?

2020-01-06 23:00 1 · 回答