NO.PZ201512020300000506
问题如下:
Comparing two ML models that could be used to accomplish Step 3, which statement(s) best describe(s) the advantages of using Classification and Regression Trees (CART) instead of K-Nearest Neighbor (KNN)?
Statement I For CART there is no requirement to specify an initial hyperparameter (like K)
Statement II For CART there is no requirement to specify a similarity (or distance) measure
Statement III For CART the output provides a visual explanation for the prediction
选项:
A.Statement I only
Statement III only
Statements I, II and III
解释:
C is correct. The advantages of using CART over KNN to classify companies into two categories (“not acquisition target” and “acquisition target”), include all of the following: For CART there are no requirements to specify an initial hyperparameter (like K) or a similarity (or distance) measure as with KNN, and CART provides a visual explanation for the prediction (i.e., the feature variables and their cut-off values at each node).
A is incorrect, because CART provides all of the advantages indicated in Statements I, II and III.
B is incorrect, because CART provides all of the advantages indicated in Statements I, II and III.
老师好,
这道题statement I我是纠结了一下,因为对CART来说,可以设定一些超参数,也可以不用。所以我没判断出来到底是对是错。然后就去看了StatementII这个结论。
在StatementII里面,它说CART没有对similarity和distance的设定,我就在想,咱们CART里的root node和decision node,不都是用的是similarity吗?比如"ROE>10?"作为一个node下面有两个分支。其实在我看来就是一种similarity的设定。我是哪里又理解错了吗? (总感觉我和出题人的思路总是不一样,哎><) 谢谢老师