开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

猫猫酱 · 2021年04月14日

immunization条件

Macaulay duration=investment horizon 这个公式是怎么定量推导出来的?

1 个答案
已采纳答案

发亮_品职助教 · 2021年04月15日

嗨,爱思考的PZer你好:


Macaulay duration=investment horizon 这个公式是怎么定量推导出来的?


纯数学推导的话会比较难,不属于咱们的要求了,如果有兴趣可以Google一下。


immunization已经属于比较成熟的技术了,所以可以说当Macaulay duration = investment horizon时,债券的这个Price risk与Reinvestment risk相互抵消已经是经受住了实践的考验了~~


那如果不用数学推导,咱们找个债券的例子,实际算一下收益也是可以证明出来的。


利率的移动,影响债券投资收益率的途径有2条:


1、通过影响债券Coupon的再投资收益,即,Coupon reinvestment来影响债券的投资收益;

2、通过影响卖出债券的买卖价格,即,Price risk来影响债券的投资收益


那我们就找个债券的数据,实际算一下,利率变动之后,Coupon reinvestment return与Capital gain or loss分别是多少。看看两者是否能相互抵消,从而实现Immunization。


例如,现在找了1个10年期债券,Coupon rate = 8%,期初债券的价格为85.50,所以可以算出来债券的YTM=10.40%

债券的Macaulay duration算出来差不多=7。


那现在我们让投资期Investment horizon = Macaulay duration = 7;


首先,我们假设利率没有变动,债券的YTM仍然为10.40%,在这种情况下,投资债券7年的年化收益率肯定就是10.40%


第2种情况,我们假设利率在期初平行上移,新的YTM变成了11.40%;此时,在投资期结束时,债券还有3年到期,债券的卖出价格等于债券剩余3年现金流的折现之和;折现率为新的利率11.40%。我们很容易能算出来债券的卖出价格为91.749;


而债券Coupon期间的再投资利率是11.40%,我们也很容易算出来Coupon经过再投资之后在第7年年末的值:


Coupon=8,第一笔Coupon复利6年;第二笔复利5年,第三笔复利4年.....那投资7年的Coupon经过再投资累积,在第7年年末的累计值为:


8×(1+11.40%)^6 + 8×(1+11.40%)^5 + 8×(1+11.40%)^4 + .....8 = 79.235


那么投资该债券期初的买入价是:85.50;期末获得总现金流是:Coupon累计值79.235 + 债券卖出价91.749 = 170.984

那我们可以算出,投资这7年的年化收益 85.50 ×(annual return)^7 = 170.984

可以算出来,Annual return = 10.40%


以上是利率上升时的计算方法,算出来投资债券的收益为10.40%,我们发现利率上升,债券的投资收益并没有变化。我们也可以用同样的办法,算一下利率下降时债券的收益率,算出来仍然是10.40%


我们发现,当满足投资期等于Macaulay duration的情况时,利率不变时,投资7年的年化收益是10.40%;

期初利率平行上移之后,投资7年的年化收益仍然是10.40%;

期初利率平行下降之后,投资7年的年化收益仍然是10.40%;


由于利率变动通过Coupon reinvestment risk与Price risk来影响债券的投资收益,且两者的影响方向是相反的。当投资期等于Macaulay duration时,我们发现无论利率上升、还是下降,债券的投资收益率都不变,所以可以判断是Price risk与Reinvestment risk相互抵消掉了。


或者,我们可以以利率不变时为Benchmark,利率不变时,可以算出来Coupon reinvestment return,利率不变时,可以算出来债券的卖出价,以这个Coupon return和Price为Benchmark。


在平行上移时,我们可以算出来期末卖出价相对Benchmark下降了多少;Coupon再投资收益相对Benchmark提升了多少。最终也可以看出来,当利率上升时,卖出价下降的幅度刚好等于Coupon再投资提升的幅度,即,两者抵消。


以利率不变时为Benchmark,在平行下降时,我们可以算出来卖出价上升了多少,Coupon再投资收益下降了多少。最终也可以看出来,利率下降时,卖出价上升的幅度刚好等于Coupon再投资下降的幅度,即,两者抵消。


以上数据,可以证出当Macaulay duration = investment horizon时,Price risk与Reinvestment risk相互抵消,这个过程实际也是1级固收中原版书给出的方法。三级了解即可。

----------------------------------------------
加油吧,让我们一起遇见更好的自己!

  • 1

    回答
  • 0

    关注
  • 389

    浏览
相关问题