开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Jenny · 2021年04月10日

WCL的计算没懂

NO.PZ2016082406000083

问题如下:

A risk analyst is trying to estimate the credit VAR for a risky bond. The credit VAR is defined as the maximum unexpected loss at a confidence level of 99.9% over a one-month horizon. Assume that the bond is valued at $1,000,000 one month forward, and the one-year cumulative default probability is 2% for this bond. What is the best estimate of the credit VAR for the bond, assuming no recovery?

选项:

A.

$20,000

B.

$1,682

C.

$998,318

D.

$0

解释:

ANSWER: C

First, we have to transform the annual default probability into a monthly probability. Using (12%)=(1d)12{(1-2\%)}={(1-d)}^{12}, we find d=0.00168, which assumes a constant probability of default during the year. Next, we compute the expected credit loss, which is d×$1,000,000=$1,682d\times\$1,000,000=\$1,682. Finally, we calculate the WCL at the 99.9% confidence level, which is the lowest number \(CL_i\)such that P(CLCLi)99.9%P{(CL\leq CL_i)}\geq99.9\%. We have P(CL=0)=99.83%P{(CL=0)}=99.83\%; P(CL1,000,000)=100.00%P{(CL\leq1,000,000)}=100.00\%. Therefore, the WCL is $1,000,000, and the CVAR is $1,000,000$1,682=$998,318\$1,000,000-\$1,682=\$998,318.

不记得课上有提到过这个计算,可以具体讲一下吗?然后对应讲义具体的哪个部分?
1 个答案

品职答疑小助手雍 · 2021年04月10日

嗨,从没放弃的小努力你好:


这题涉及对概念的理解和运用的,单纯的课上的概念其实都懂的,不过这题理解上涉及WCL的含义,以及月PD和年PD的转换。

首先,月PD和年PD的转换:题目给了年PD是2%,也就是1-0.02,代表一年不违约的概率;一年不违约也就意味着连续12个月不违约,假设月PD是d的话,12个月连续不违约的概率就是(1-d)的12次方。连续12个月不违约的概率和1年不违约的概率是相等的,即1-0.02 = (1-d)的12次方。

然后是WCL的含义:前一步算了月PD是0.168%,也就是那么单个月来说在0.168%概率的情况下,会发生1 million的损失;而1- 0.168% = 99.832%的概率下,是不发生损失的。而题目要求的confidence level是99.9%,超过的99.832%这个数(也可以理解成在被包含在最尾部的那0.168%的概率里,损失是1million),所以WCL=1million。

而Credit var是等于WCL-EL的,所以答案就是C了。


PS:如果题目要求的confidence level是小于99.832%的,比如99%,那WCL就等于0了,此时credit var(按公式是负数,但是var不能为负,否则就是收益了)也就等于0了。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 1

    回答
  • 0

    关注
  • 494

    浏览
相关问题

A risk analyst is trying to estimate the cret Vfor a risky bon The cret Vis finethe maximum unexpecteloss a confinlevel of 99.9% over a one-month horizon. Assume ththe bonis value$1,000,000 one month forwar anthe one-yecumulative fault probability is 2% for this bon Whis the best estimate of the cret Vfor the bon assuming no recovery? $20,000 $1,682 $998,318 $0 ANSWER: C First, we have to transform the annufault probability into a monthly probability. Using (1−2%)=(1−12{(1-2\%)}={(1-}^{12}(1−2%)=(1−12, we fin0.00168, whiassumes a constant probability of fault ring the year. Next, we compute the expectecret loss, whiis $1,000,000=$1,682times\$1,000,000=\$1,682$1,000,000=$1,682. Finally, we calculate the Wthe 99.9% confinlevel, whiis the lowest number \(CL_i\)suthP(CL≤CLi)≥99.9%P{(CL\leq CL_i)}\geq99.9\%P(CL≤CLi​)≥99.9%. We have P(CL=0)=99.83%P{(CL=0)}=99.83\%P(CL=0)=99.83%; P(CL≤1,000,000)=100.00%P{(CL\leq1,000,000)}=100.00\%P(CL≤1,000,000)=100.00%. Therefore, the Wis $1,000,000, anthe CVis $1,000,000−$1,682=$998,318\$1,000,000-\$1,682=\$998,318$1,000,000−$1,682=$998,318. 老师如果题目叫你求得CVAR是小于99.83%,P(loss≤0)=99.83%,那么WCL=0,了嘛,CVAR=-EL

2020-10-14 10:23 1 · 回答

$1,682 $998,318 $0 ANSWER: C First, we have to transform the annufault probability into a monthly probability. Using (1−2%)=(1−12{(1-2\%)}={(1-}^{12}(1−2%)=(1−12, we fin0.00168, whiassumes a constant probability of fault ring the year. Next, we compute the expectecret loss, whiis $1,000,000=$1,682times\$1,000,000=\$1,682$1,000,000=$1,682. Finally, we calculate the Wthe 99.9% confinlevel, whiis the lowest number \(CL_i\)suthP(CL≤CLi)≥99.9%P{(CL\leq CL_i)}\geq99.9\%P(CL≤CLi​)≥99.9%. We have P(CL=0)=99.83%P{(CL=0)}=99.83\%P(CL=0)=99.83%; P(CL≤1,000,000)=100.00%P{(CL\leq1,000,000)}=100.00\%P(CL≤1,000,000)=100.00%. Therefore, the Wis $1,000,000, anthe CVis $1,000,000−$1,682=$998,318\$1,000,000-\$1,682=\$998,318$1,000,000−$1,682=$998,318.老师,我看了所有问题的回答还是没没明白99.83%是怎么算出来的还有怎么得出WCL是1,000,000。可以把讲义里这部分的内容帮忙粘贴一下吗?实在是很难和讲义对应上。

2020-09-20 16:51 1 · 回答

A risk analyst is trying to estimate the cret Vfor a risky bon The cret Vis finethe maximum unexpecteloss a confinlevel of 99.9% over a one-month horizon. Assume ththe bonis value$1,000,000 one month forwar anthe one-yecumulative fault probability is 2% for this bon Whis the best estimate of the cret Vfor the bon assuming no recovery? $20,000 $1,682 $998,318 $0 ANSWER: C First, we have to transform the annufault probability into a monthly probability. Using (1−2%)=(1−12{(1-2\%)}={(1-}^{12}(1−2%)=(1−12, we fin0.00168, whiassumes a constant probability of fault ring the year. Next, we compute the expectecret loss, whiis $1,000,000=$1,682times\$1,000,000=\$1,682$1,000,000=$1,682. Finally, we calculate the Wthe 99.9% confinlevel, whiis the lowest number \(CL_i\)suthP(CL≤CLi)≥99.9%P{(CL\leq CL_i)}\geq99.9\%P(CL≤CLi​)≥99.9%. We have P(CL=0)=99.83%P{(CL=0)}=99.83\%P(CL=0)=99.83%; P(CL≤1,000,000)=100.00%P{(CL\leq1,000,000)}=100.00\%P(CL≤1,000,000)=100.00%. Therefore, the Wis $1,000,000, anthe CVis $1,000,000−$1,682=$998,318\$1,000,000-\$1,682=\$998,318$1,000,000−$1,682=$998,318. 老师问个弱弱的问题 这个历史法计算都是假设是贝努力分布嘛 比如三个债券 PA=0.05 PB=0.1 PC=0.2 假设AB违约C不违约的概率0.05*0.1*(1-0.2) 既然是贝努力为啥不是3C2*0.05*0.01*(1-0.2)呢。 我的意思为啥不用C那个公式算? 什么情况才会用到C那个公式算?

2020-08-17 00:23 2 · 回答

A risk analyst is trying to estimate the cret Vfor a risky bon The cret Vis finethe maximum unexpecteloss a confinlevel of 99.9% over a one-month horizon. Assume ththe bonis value$1,000,000 one month forwar anthe one-yecumulative fault probability is 2% for this bon Whis the best estimate of the cret Vfor the bon assuming no recovery? $20,000 $1,682 $998,318 $0 ANSWER: C First, we have to transform the annufault probability into a monthly probability. Using (1−2%)=(1−12{(1-2\%)}={(1-}^{12}(1−2%)=(1−12, we fin0.00168, whiassumes a constant probability of fault ring the year. Next, we compute the expectecret loss, whiis $1,000,000=$1,682times\$1,000,000=\$1,682$1,000,000=$1,682. Finally, we calculate the Wthe 99.9% confinlevel, whiis the lowest number \(CL_i\)suthP(CL≤CLi)≥99.9%P{(CL\leq CL_i)}\geq99.9\%P(CL≤CLi​)≥99.9%. We have P(CL=0)=99.83%P{(CL=0)}=99.83\%P(CL=0)=99.83%; P(CL≤1,000,000)=100.00%P{(CL\leq1,000,000)}=100.00\%P(CL≤1,000,000)=100.00%. Therefore, the Wis $1,000,000, anthe CVis $1,000,000−$1,682=$998,318\$1,000,000-\$1,682=\$998,318$1,000,000−$1,682=$998,318. 为什么会有WCL=0 的这个假设 P(CL=0) =99.83%, 所以只有可能等于1682 和0这两个可能性?这个地方没有看懂

2020-03-21 16:20 1 · 回答