NO.PZ2019040801000027
问题如下:
The price percent changes of stock X and Y were 5.0% and 1.0%, respectively. The correlation estimate based on the historical data of the two on day n-1 is 0.6, the estimated standard deviations of price of X and Y on day n-1 were 2.3% and 1.7%, respectively. Suppose the analyst uses the EWMA model with λ = 0.97 to update the correlation and covariance. What is the new estimate of the correlation between X and Y on day n?
选项:
A.0.34.
B.0.42.
C.0.60.
D.0.68.
解释:
C is correct.
考点:EWMA模型
解析:先计算day n-1时候的协方差:
cov(X, Y) = ΡX,Y x σXσY = 0.6 * 2.3% * 1.7% = 0.000235
然后通过EWMA模型
估计day n的协方差:covn = 0.97 * 0.000235 + 0.03 * 5% * 1% = 0.00024295
估计X的方差:σ2X,n = 0.97 x 0.023^2 + 0.03 x 0.05^2 = 0.00058813
X的标准差就是0.00058813^0.5=0.02425
估计Y的方差:σ2Y,n = 0.97 x 0.0172 + 0.03 x0.012 = 0.0003078 + 0.000003 = 0.0002833
Y的标准差就是0.0002833^0.5=0.01683
最后新的相关系数就是协方差除以X标准差再除以Y的标准差:
0.00024295/(0.02425*0.01683)=0.5952
【估计day n的协方差:covn = 0.97 * 0.000235 + 0.03 * 5% * 1% = 0.00024295】里面相当于【Un-1^2=5% * 1%】,这是为啥呢我也不知道X和Y什么关系啊,直接乘?