开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Alex · 2021年01月04日

问一道题:NO.PZ2016031101000007

问题如下:

A European equity composite contains three portfolios. For convenience, the cash flow weighting factors are presented below.

A. Calculate the returns of Portfolio A, Portfolio B, and Portfolio C for the month of August using the Modified Dietz formula.

B. Calculate the August composite return by asset-weighting the individual portfolio returns using beginning-of-period values.

C. Calculate the August composite return by asset-weighting the individual portfolio returns using a method that reflects both beginning-of-period values and external cash flows.

选项:

解释:

A.

Portfolio returns:

lrA=85.374.97.574.9+(7.5×0.613)=2.979.5=0.0365=3.65%{l}r_A=\frac{85.3-74.9-7.5}{74.9+(7.5\times0.613)}=\frac{2.9}{79.5}=0.0365=3.65\%\\

rB=109.8127.6(15)(5)127.6+(15×0.742)+(5×0.387)=2.2114.535=0.0192=1.92%r_B=\frac{109.8-127.6-(-15)-(-5)}{127.6+(-15\times0.742)+(-5\times0.387)}=\frac{2.2}{114.535}=0.0192=1.92\%

rC=128.4110.415110.4+(15×0.387)=3116.205=0.0258=2.58%r_C=\frac{128.4-110.4-15}{110.4+(15\times0.387)}=\frac3{116.205}=0.0258=2.58\%

B.

To calculate the composite return based on beginning assets, first determine the percent of beginning composite assets represented by each portfolio; then determine the weighted-average return for the month:

Beginning composite assets = 74.9 + 127.6 + 110.4 = 312.9

Portfolio A = 74.9/312.9 = 0.239 = 23.9%

Portfolio B = 127.6/312.9 = 0.408 = 40.8%

Portfolio C = 110.4/312.9 = 0.353 = 35.3%

                              lrComp=(0.0365×0.239)+(0.0192×0.408)+(0.0258×0.353)=0.0257=2.57%{l}r_{Comp}=(0.0365\times0.239)+(0.0192\times0.408)+(0.0258\times0.353)\\=0.0257=2.57\%

C.

To calculate the composite return based on beginning assets plus cash flows, first use the denominator of the Modified Dietz formula to determine the percentage of total beginning assets plus weighted cash flows represented by each portfolio, and then calculate the weighted-average return:

Beginning composite assets + Weighted cash flows = [74.9 + (7.5 × 0.613)] + [127.6 + (–15 × 0.742) + (–5×0.387)] + [110.4 + (15 × 0.387)] = 79.5 + 114.535 + 116.205 = 310.24

Portfolio A = 79.5/310.24 = 0.256 = 25.6%

Portfolio B = 114.535/310.24 = 0.369 = 36.9%

Portfolio C = 116.205/310.24 = 0.375 = 37.5%

lrComp=(0.0365×0.256)+(0.0192×0.369)+(0.0258×0.375)=0.0261=2.61%{l}r_{Comp}=(0.0365\times0.256)+(0.0192\times0.369)+(0.0258\times0.375)\\=0.0261=2.61\%

A mathematically equivalent method consists simply in summing beginning assets and intra-period external cash flows, treating the entire composite as though it were a single portfolio and then computing the return directly with the Modified Dietz formula.

lrComp=323.5312.9(15+7.5+10)312.9+[(15)×0.742+7.5×0.613+10×0.387]=0.0261=2.61%{l}r_{Comp}=\frac{323.5-312.9-(-15+7.5+10)}{312.9+\lbrack(-15)\times0.742+7.5\times0.613+10\times0.387]}\\=0.0261=2.61\%

关于提问C,答案有两个方法,第二种很简单。

如果考试考到,可以直接用方法二么?

但是方法二没有体现出加权平均来

1 个答案

韩韩_品职助教 · 2021年01月04日

嗨,爱思考的PZer你好:


同学你好,就像这个题目一样,考试如果遇到这个计算的话,是一定会告诉你用什么样权重来做weighting。直接按照题目的说法来计算就可以~

 


-------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!