开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

mona · 2017年12月22日

问一道题:NO.PZ2016062402000020 [ FRM I ]

问题如下图:
选项:
A.
B.
C.
D.
解释:
最后一个算出0.923的公式是怎么来的?看之前的解答中间有个连立公式 b=cov(XY)/ (SD(X)^2),但是不懂这是为什么?谢谢。
2 个答案

吴昊_品职助教 · 2018年02月12日

线性回归中x和残差项是不相关的,所以cov(x,e)=0。同学这里的e是残差项,并非是自然对数。

吴昊_品职助教 · 2017年12月22日


YQT__ · 2018年02月12日

不好意思打扰一下,请问如果SD(e)不为0,既e不是常数,那么cov(x,a+bx+e)不是应该等于b*cov(x,x)+cov(x,e)吗?

吴昊_品职助教 · 2018年02月12日

线性回归中x和残差项是不相关的,所以cov(x,e)=0。同学这里的e是残差项,并非是自然对数。

  • 2

    回答
  • 2

    关注
  • 394

    浏览
相关问题

NO.PZ2016062402000020问题如下Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY?A.0.923B.0.852C.0.7010.462We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923.有点奇怪啊,看了答案也没在讲义找到,相关例题,我这个是刚学完Quant Section2 筛选题库的题看到的

2024-08-29 16:40 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. 第一步求Sx)V(y)=0.26^2 = 1.2^2 x Sx)^2 + 0.1^2Sx) = 0.2第二利用Beta公式求correlationBeta = correlation x Sy)/Sx)b = Beta = 1.21.2 = correlation x 0.26/0.2correlation = 0.923

2024-04-05 12:01 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. beta 为什么等于1.2?

2024-04-05 11:54 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. 我试着自己推了一下,不知道是不是可以把这个当成一个结论。Y = a + + ε, 因此V(Y) = (bX)^2 + V(ε), 带入得 0.26^2 = 1.2^2 * V(X) +0.1^2, 得到V(X)=0.04。Cov(X,Y)= E[(X-E(X)]*E[(Y-E(Y))], 把= a + + ε 代入,得Cov (X,Y)= E[(X-E(X)] *E(a+bX+ε - a-b*E(X)) = E[(X-E(X)] * E(X-E(X)) = b*E(X-E(X))^2 = b*V(X)所以我们得到Cov(X,Y) = b*V(X) 这个等式,代入讲义中ρ的公式两边取平方,ρ^2 = b^2 * V(X)/V(Y) = 1.2^2 * 0.04 / 0.26^2, 因此ρ = 0.923

2023-07-07 17:40 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923.

2022-05-11 20:28 1 · 回答