开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

tongtonggong · 2020年10月20日

问一道题:NO.PZ2015121810000003 [ CFA II ]

问题如下:

Assume that the following one-factor model describes the expected return for portfolios:

E(Rp)=0.10+0.12βp,1E{(R_p)}=0.10+0.12\beta_{p,1}

Also assume that all investors agree on the expected returns and factor sensitivity of the three highly diversified Portfolios A, B, and C given in the following table:

Assuming the one-factor model is correct and based on the data provided for Portfolios A, B, and C, determine if an arbitrage opportunity exists and explain how it might be exploited.

解释:

According to the one-factor model for expected returns, the portfolio should have these expected returns if they are correctly priced in terms of their risk:

Portfolio A

E(RA) = 0.10 + 0.12βA,1 = 0.10 + (0.12)(0.80) = 0.10 + 0.10 = 0.20

Portfolio B

E(RB) = 0.10 + 0.12βB,1 = 0.10 + (0.12)(1.00) = 0.10 + 0.12 = 0.22

Portfolio C

E(RC) = 0.10 + 0.12βC,1 = 0.10 + (0.12)(1.20) = 0.10 + 0.14 = 0.24

In the table below, the column for expected return shows that Portfolios A and C are correctly priced but Portfolio B offers too little expected return for its risk, 0.15 or 15%. By shorting Portfolio B (selling an overvalued portfolio) and using the proceeds to buy a portfolio 50% invested in A and 50% invested in C with a sensitivity of 1 that matches the sensitivity of B, for each monetary unit shorted (say each euro), an arbitrage profit of 0.22 -0.15 = 0.07 is earned.

有点不是很理解,buy A+C花了 0.22,sell 掉B 赚了0.15,那不是亏了0.07 吗?
1 个答案

星星_品职助教 · 2020年10月20日

同学你好,

0.22和0.15都是收益率的概念。

1. 从收益率的角度来理解:buy 0.5A+0.5C是因为买了这个组合所以获得了0.22的收益率,而sell B相当于放弃了0.15的收益率。所以赚的收益率是0.22-0.15=0.07

2. 从价格的角度来理解:0.22和0.15的return同时也是折现率的概念,由于所有的金融产品定价都是折现求和,所以return(折现率)越高,对应价格越低。

所以卖出的0.15(sell B)对应的价格高,卖空所获得的资金就多;而得到的0.22(0.5A+0.5C)对应的价格低,付出的购买资金就少。这一收一支对应的价差就是Arbitrage profit。