开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

DDAXC · 2020年10月13日

问一道题:NO.PZ2016070201000032

问题如下:

Suppose a financial institution has a two-asset portfolio with $7 million in asset A and $5 million in asset B. The portfolio correlation is 0.4, and the daily standard deviation of returns for asset A and B are 2% and 1%, respectively. -what is the 10-day value at risk (VaR) of this portfolio at a 99% confidence level ( α = 2.33)? Supposed the mean of portfolio returns is zero.

选项:

A.

$1.226 million.

B.

$1.670 million.

C.

$2.810 million.

D.

$3.243 million.

解释:

A

The first step in solving for the 10-day VaR requires calculating the covariance matrix.

lcov11=σ12=0.022=0.0004cov22=σ22=0.012=0.0001cov12=ρ1,2×σ1×σ2=0.4×0.02×0.01=0.00008{l}{\mathrm{cov}}_{11}=\sigma_1^2=0.02^2=0.0004\\{\mathrm{cov}}_{22}=\sigma_2^2=0.01^2=0.0001\\{\mathrm{cov}}_{12}=\rho_{1,2\times}\sigma_1^{}\times\sigma_2=0.4\times0.02^{}\times0.01=0.00008

Thus, the covariance matrix C, can be represented as:

(0.0004amp;0.000080.00008amp;0.0001)(\begin{array}{cc}0.0004&0.00008\\0.00008&0.0001\end{array})

Next, the standard deviation of the portfolio, σp\sigma_p, is determined as foJlows:

Step 1: Compute βh\beta_h × C:

l[7,5](0.0004amp;0.000080.00008amp;0.0001)=[(7×0.0004)+(5×0.00008)amp;(7×0.00008)+(5×0.0001)]=[0.0032amp;0.00106]{l}{\lbrack7,5\rbrack}{(\begin{array}{cc}0.0004&0.00008\\0.00008&0.0001\end{array})}\\={\lbrack{(7\times0.0004)}+{(5\times0.00008)}\begin{array}{cc}&\end{array}{{(7\times0.00008)}+{(5\times0.0001)}\rbrack}}\\={\lbrack0.0032\begin{array}{cc}&\end{array}}{0.00106\rbrack}

Step 2: Compute ( βh\beta_h × C)* βv\beta_v:

l[0.0032amp;0.00106][75]=(0.0032×7)+(0.00106×5)=0.0277{l}{\lbrack0.0032\begin{array}{cc}&\end{array}}{0.00106\rbrack}{\lbrack\begin{array}{c}7\\5\end{array}\rbrack}\\={(0.0032\times7)}+{(0.00106\times5)}=0.0277

Step 3:Compute σp\sigma_p:

σp=βh×C×βV=0.0277=0.1664\sigma_p=\sqrt{\beta_h\times C\times\beta_V}=\sqrt{0.0277}=0.1664

The 10-day portfolio VaR(in millions) at the 99% confidence level is then computed as:

VaRP=σPαX=0.1664×2.33×10=VaR_P=\sigma_P\alpha\sqrt X=0.1664\times2.33\times\sqrt{10}=$1.226 million

哎呀这个考虑权重了 是我算错了 请老师忽略我的问题 抱歉

1 个答案

品职答疑小助手雍 · 2020年10月13日

嗨,从没放弃的小努力你好:


~


-------------------------------
努力的时光都是限量版,加油!


  • 1

    回答
  • 0

    关注
  • 367

    浏览
相关问题

这个题的sigma给的是百分比形式 为什么在计算组合的sigma时不考虑权重了呢?

2020-10-13 14:29 1 · 回答

我这种做法感觉更简单,这样也正确的吗?解析的答案完全看不懂,用的是什么解答方法啊,好复杂不懂,需要掌握吗?

2020-07-07 00:08 1 · 回答

您好请问

2020-03-09 18:29 1 · 回答

$1.670 million. $2.810 million. $3.243 million. A The first step in solving for the 10-y Vrequires calculating the covarianmatrix. lcov11=σ12=0.022=0.0004cov22=σ22=0.012=0.0001cov12=ρ1,2×σ1×σ2=0.4×0.02×0.01=0.00008{l}{\mathrm{cov}}_{11}=\sigma_1^2=0.02^2=0.0004\\{\mathrm{cov}}_{22}=\sigma_2^2=0.01^2=0.0001\\{\mathrm{cov}}_{12}=\rho_{1,2\times}\sigma_1^{}\times\sigma_2=0.4\times0.02^{}\times0.01=0.00008lcov11​=σ12​=0.022=0.0004cov22​=σ22​=0.012=0.0001cov12​=ρ1,2×​σ1​×σ2​=0.4×0.02×0.01=0.00008 Thus, the covarianmatrix crepresenteas: (0.0004amp;0.000080.00008amp;0.0001)(\begin{array}{cc}0.0004 0.00008\\0.00008 0.0001\enarray})(0.00040.00008​amp;0.00008amp;0.0001​) Next, the stanrviation of the portfolio, σp\sigma_pσp​, is terminefoJlows: Step 1: Compute βh\beta_hβh​ × l[7,5](0.0004amp;0.000080.00008amp;0.0001)=[(7×0.0004)+(5×0.00008)amp;(7×0.00008)+(5×0.0001)]=[0.0032amp;0.00106]{l}{\lbrack7,5\rbrack}{(\begin{array}{cc}0.0004 0.00008\\0.00008 0.0001\enarray})}\\={\lbrack{(7\times0.0004)}+{(5\times0.00008)}\begin{array}{c\enarray}{{(7\times0.00008)}+{(5\times0.0001)}\rbrack}}\\={\lbrack0.0032\begin{array}{c\enarray}}{0.00106\rbrack}l[7,5](0.00040.00008​amp;0.00008amp;0.0001​)=[(7×0.0004)+(5×0.00008)​amp;​(7×0.00008)+(5×0.0001)]=[0.0032​amp;​0.00106] Step 2: Compute ( βh\beta_hβh​ × C)* βv\beta_vβv​: l[0.0032amp;0.00106][75]=(0.0032×7)+(0.00106×5)=0.0277{l}{\lbrack0.0032\begin{array}{c\enarray}}{0.00106\rbrack}{\lbrack\begin{array}{c}7\\5\enarray}\rbrack}\\={(0.0032\times7)}+{(0.00106\times5)}=0.0277l[0.0032​amp;​0.00106][75​]=(0.0032×7)+(0.00106×5)=0.0277 Step 3:Compute σp\sigma_pσp​: σp=βh×C×βV=0.0277=0.1664\sigma_p=\sqrt{\beta_h\times C\times\beta_V}=\sqrt{0.0277}=0.1664σp​=βh​×C×βV​ ​=0.0277 ​=0.1664 The 10-y portfolio VaR(in millions) the 99% confinlevel is then computeas: VaRP=σPαX=0.1664×2.33×10=VaR_P=\sigma_P\alpha\sqrt X=0.1664\times2.33\times\sqrt{10}=VaRP​=σP​αX ​=0.1664×2.33×10 ​=$1.226 million 老师,请问这个解析讲义上有类似例题么?我听完了市场风险部分,但是对解析过程没有印象啊…

2020-02-11 18:59 2 · 回答