开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

kevinzhu · 2020年08月02日

问一道题:NO.PZ2016031001000127

问题如下:

A bond has an annual modified duration of 7.020 and annual convexity of 65.180. If the bond’s yield-to-maturity decreases by 25 basis points, the expected percentage price change is closest to:

选项:

A.

1.73%.

B.

1.76%.

C.

1.78%.

解释:

C is correct.

The expected percentage price change is closest to 1.78%. The convexity adjusted percentage price change for a bond given a change in the yield-to-maturity is estimated by:

%ΔPV  Full[AnnModDur×ΔYield]+[0.5×AnnConverxity×(ΔYield)2]\%\Delta PV\;Full\approx\lbrack-AnnModDur\times\Delta Yield\rbrack+\lbrack0.5\times AnnConverxity\times(\Delta Yield)^2\rbrack

%ΔPV  Full[7.020×(0.0025)]+[0.5×65.180×(0.0025)2]=0017754  or  1.78%\%\Delta PV\;Full\approx\lbrack-7.020\times(-0.0025)\rbrack+\lbrack0.5\times65.180\times(-0.0025)^2\rbrack=0017754\;or\;1.78\%

这个公式本来是Macaulay duration吧?为何可以直接使用modified duration?

1 个答案
已采纳答案

WallE_品职答疑助手 · 2020年08月02日

同学你好,

这个公式里面的Duration是 Modified duration哦,

因为Modified duration才是反应利率的变化相对与债券价格的变化,

麦考林久期是对于债券的平均回流时间做出的测算。