开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

王思祺 · 2020年07月20日

老师,想问一下题里par value 是怎么得出1000的 计算的?

问题如下:

A 5-year, 5% semiannual coupon payment corporate bond is priced at 104.967 per 100 of par value. The bond’s yield-to-maturity, quoted on a semiannual bond basis, is 3.897%. An analyst has been asked to convert to a monthly periodicity. Under this conversion, the yield-to-maturity is closest to:

选项:

A.

3.87%.

B.

4.95%.

C.

7.67%.

解释:

A is correct.

The yield-to-maturity, stated for a periodicity of 12 (monthly periodicity), is 3.87%.The formula to convert an annual percentage rate (annual yield-to-maturity) from one periodicity to another is as follows:

(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n

(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}

(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}

1.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}

(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}

1.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}

1.003221=(APR1212)1.00322-1={(\frac{APR12}{12})}

APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.

2 个答案

吴昊_品职助教 · 2020年07月20日

不用谢哦~

吴昊_品职助教 · 2020年07月20日

同学你问的是截图中基础班例题吧?问题和题库中的题目好像没有关系。

我们这里假设的,和哪个整十数的倍数比较接近,FV就是哪个。比方,如果这道题中的770变成了77,那FV就是100了。现在题目中是770,所以FV就是1000。但是这种情况在考试中不会出现,我翻阅了一下原版书课后题和例题,都是会明确告知我们面值是多少的,类似于“The value per 100 of par value”。这样相当于就是告诉我们面值是多少了,考试出题会非常规范,不会让我们在面值这里confuse。同学可以不用担心。

王思祺 · 2020年07月20日

收到,是讲义的题,明白了谢谢老师~

  • 2

    回答
  • 0

    关注
  • 588

    浏览
相关问题

NO.PZ2016031001000076 问题如下 A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%. B.4.95%. C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 请问APR是在哪里学过呢,怎么这一章我没有看到这个知识点呢?谢谢!

2023-04-27 05:08 1 · 回答

NO.PZ2016031001000076问题如下A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%.B.4.95%.C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 这里求出或者看出一年计息两次的变化收益率是3.897%之后怎么按计算器求出最终答案?题目是要求按出计息12次的年化收益率吗?

2022-10-13 22:55 1 · 回答

NO.PZ2016031001000076问题如下A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%.B.4.95%.C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 请问计算器如何按开12次方?

2022-07-28 08:19 1 · 回答

NO.PZ2016031001000076问题如下A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%.B.4.95%.C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 请问下老师为什么PMT是2.5?

2022-06-24 01:19 1 · 回答

我用计算器这么按的 N=5*12=60 PV= -104.967  PMT= 100*5%/12=0.4167 FV=100 算出来 IY=0.3254这个应该是月化,我再乘以 12 得到对应的年化是 3.9,为什么这样是不对的呢?

2020-11-06 22:33 1 · 回答