开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

中二 · 2020年07月13日

问一道题:NO.PZ2016070201000056 [ FRM II ]

问题如下:

A European put option has two years to expiration and a strike price of $101.00. The underlying is a 7% annual coupon bond with three years to maturity. Assume that the risk-neutral probability of an up move is 0.76 in year 1 and 0.60 in year 2. The current interest rate is 3.00% At the end of year l, the rate will either be 5.99% or 4.44%. If the rate in year 1 is 5.99%, it will either rise to 8.56% or rise to 6.34% in year 2. If the rate in one year is 4.44%, it will either rise to 6.34% or rise to 4.70%. The value of the put option today is closest to:

选项:

A.

$1.17.

B.

$1.30.

C.

$1.49.

D.

$1.98.

解释:

This is the same underlying bond and interest rate tree as in the call option example from this topic. However, here we are valuing a put option.

The option value in the upper node at the end of year 1 is computed as:

($2.44×0.6)+($0.38×0.4)1.0599=$1.52\frac{{(\$2.44\times0.6)}+{(\$0.38\times0.4)}}{1.0599}=\$1.52

The option value in the lower node at the end of year 1 is computed as:

($0.38×0.6)+($0.00×0.4)1.0444=$0.22\frac{{(\$0.38\times0.6)}+{(\$0.00\times0.4)}}{1.0444}=\$0.22

The option value today is computed as:

($1.52×0.76)+($0.22×0.24)1.0300=$1.17\frac{{(\$1.52\times0.76)}+{(\$0.22\times0.24)}}{1.0300}=\$1.17

2.44、0.38和0是option在t=2时刻的价格,把它们分别按概率往1时刻折现的时候不应该加上7块钱的coupon吗?同理t=1时刻往0时刻折现也应该有coupon吧,但答案好像没有算?

1 个答案

小刘_品职助教 · 2020年07月14日

同学你好,

不需要把利息往前折算哈,欧式看跌期权在往前折算的时候只需要判断出put value,然后将put value往前折就行,计算出的是option的价值。

算上票息的那种是利率二叉树计算债券的价值,二者不一样,一定要注意区分哈~