开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

一蒙就对 · 2020年06月29日

问一道题:NO.PZ2017092702000006 [ CFA I ]

问题如下:

For a lump sum investment of ¥250,000 invested at a stated annual rate of 3% compounded daily, the number of months needed to grow the sum to ¥1,000,000 is closest to:

选项:

A.

555.

B.

563.

C.

576.

解释:

A is correct.

The effective annual rate (EAR) is calculated as follows:

EAR = (1 + Periodic interest rate)m – 1   EAR = (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financial calculator results in (where FV is future value and PV is present value): (1 + 0,030453)N = FVN/PV = ¥1,000,000/¥250,000)So,N = 46.21 years, which multiplied by 12 to convert to months results in 554.5, or ≈ 555 months.

请问老师,IY不应该是0.03➗365么,为啥用EAR代表IY,我这个算出来的又是什么 感觉没有理解计算器这个IY是啥意思,我记得之前做题都是期间利率,用年化的除以滚多少次,做了这道题感觉懵了,希望得到您的耐心讲解。
1 个答案

星星_品职助教 · 2020年06月30日

同学你好,

I/Y是期间利率的概念,这道题题干描述为“a stated annual rate of 3% compounded daily”,所以如果把一天设为一期的话,那么日利率就是3%/365。但由于I/Y的设置中,百分号是作为一个单位来处理的,不需要输入。所以输入计算器的I/Y就变成了3/365。

要注意“期间”是要对应的,所以如果I/Y期间设置为“天”,那么计算出来的N也就会是多少“天”,结果应该是16,867.2天。

但如果把“天”作为期间,这个时候就没法进行下去了,因为题干要求的是“the number of months needed ”,在没提示一个月是30还是31天的情况下,没法将天转化为“月”。

所以只能换其他的方法,即将期间设置为“年”,然后乘以12得到月数。这个时候就需要将“a stated annual rate of 3% compounded daily”转化成EAR= 3.0453%,去掉百分号后将3.0453输入成I/Y,然后此时得出来的N就是46.21年,进而可以得到最终答案。

  • 1

    回答
  • 0

    关注
  • 824

    浏览
相关问题

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 这题我EAR已经算出来是3.045,带入计算器知四求一不知道为什么算出来是46.21.

2023-06-02 16:31 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 不能用上面这个去试,是因为不能默认每个月30天么?谢谢

2023-05-28 15:18 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 为什么用 FVN/PV

2023-03-14 11:28 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 我直接就是计算器计算的 I/Y是3÷365 pmt=0 然后分别代入pv和fv最后求出是16867再除以三十天 是562.24

2022-11-22 02:27 3 · 回答

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months.请问这一步是什么意思,是怎么求得的46.21呢。我算到日利率为0.030453就不知道怎么往下算了

2022-11-11 06:02 3 · 回答