开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Schneider · 2020年06月14日

问一道题:NO.PZ2017092702000014 [ CFA I ]

问题如下:

Grandparents are funding a newborn’s future university tuition costs, estimated at $50,000/year for four years, with the first payment due as a lump sum in 18 years. Assuming a 6% effective annual rate, the required deposit today is closest to:

选项:

A.

$60,699.

B.

$64,341.

C.

$68,201.

解释:

B is correct.

First, find the present value (PV) of an ordinary annuity in Year 17 that represents the tuition costs:  50,000[11(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}  = $50,000 × 3.4651 = $173,255.28. Then, find the PV of the annuity in today’s dollars (where FV is future value):

PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}

PV0 = $64,340.85 ≈ $64,341.

这道题不是lump sum一次性给完200000块的意思吗?为什么还要求第17年的pv
1 个答案

星星_品职助教 · 2020年06月14日

同学你好,

这里的“lump sum”描述的是前面的“the first payment”,意思是首笔PMT是一次性付,并不是全部的付款都一次性付的意思,而且从前一句话可以看出,给的是$50,000而非$2000,000。

同样,从前一句的“50,000/year for four years”可得出一共有四笔PMT,每年付一次。所以是一个年金求pv的问题。

Schneider · 2020年06月15日

好的,非常感谢

  • 1

    回答
  • 0

    关注
  • 470

    浏览
相关问题

NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341. 173255.28我能算出来 但为什么下一步时间是17 不是18

2023-09-23 20:31 1 · 回答

NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341. N=18, I/Y= 6, PMT=0, FV = 200000 这样哪里错了

2023-09-19 22:24 1 · 回答

NO.PZ2017092702000014问题如下Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to:A.$60,699.B.$64,341.C.$68,201.B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341.first payment e,这里的e不是先付吗?如果不是,那么 题干一般如何表达先付呢?

2023-08-21 16:57 1 · 回答

NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341. 第一步, PMT=50000,N=4,I/Y=6,FV=0,算出PV,用算出的PV值再乘以(1+I/Y),这个就是后面要求的值的FV第二步,用上面最终求得的值作为FV,PMT=0,N=18,I/Y=6,求PV这里第二步的N是不是就应该用18来算?

2023-05-22 14:50 1 · 回答

NO.PZ2017092702000014问题如下Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to:A.$60,699.B.$64,341.C.$68,201.B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341.老师,学费不是都应该先付吗?这个不按照常识处理吗?另外,如果,18时点开始的payment 是先付,是不是答案就是C啊?,折到17年初,也就是16年末是173255。

2023-05-21 17:37 1 · 回答