开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

尼克内姆 · 2020年06月08日

问一道题:NO.PZ2016031001000113 [ CFA I ]

问题如下:

An investor buys a three-year bond with a 5% coupon rate paid annually. The bond, with a yield-to-maturity of 3%, is purchased at a price of 105.657223 per 100 of par value. Assuming a 5-basis point change in yield-to-maturity, the bond’s approximate modified duration is closest to:

选项:

A.

2.78.

B.

2.86.

C.

5.56.

解释:

A is correct.

The bond’s approximate modified duration is closest to 2.78. Approximate modified duration is calculated as:

ApproxModDur= [(PV−) − (PV+)] / [2×(ΔYield)×(PV0)]

Lower yield-to-maturity by 5 bps to 2.95%: PV-=105.804232

PV−= 5 / (1+0.0295) + 5/(1+0.0295)^2 + 105/ (1+0.0295)^3 =105.804232

Increase yield-to-maturity by 5 bps to 3.05%: PV+=105.510494

PV+= 5/ (1+0.0305) + 5/ (1+0.0305)^2 + 105/ (1+0.0305)^3 =105.510494

PV= 105.657223, ΔYield = 0.0005

modified duration = (105.804232 − 105.510494)/(2×0.0005×105.657223) = 2.78

ApproxModDur=105.804232105.5104942×0.0005×105.657223=2.78ApproxModDur=\frac{105.804232-105.510494}{2\times0.0005\times105.657223}=2.78

题目没有交代是不是含权债券,怎么想到是求approximate duration??课堂讲只有含权债券才用这个方法

1 个答案

WallE_品职答疑助手 · 2020年06月08日

同学你好,

首先题目要求你求的是approximate modified duration,所以你需要用这个公式。

再者非含权债券去求duration 也是可以用这个公式的。[(PV−) − (PV+)] / [2×(ΔYield)×(PV0)]的分子部分,对非含权债券来说,相当于等于是2倍的delta P,再和分母化简就变成了 (DeltaP/P)/delta Y了,这不就是modified duration的公式了吗。

含权债券之所以用这个公式是因为考虑到了行权后,PV-和PV+离PV0差距过大的情形。本身非含权债券,也能同样通过这个公式计算,只是PV-和PV+都离PV0差距接近

  • 1

    回答
  • 0

    关注
  • 941

    浏览
相关问题

NO.PZ2016031001000113问题如下investor buys a three-yebonwith a 5% coupon rate paiannually. The bon with a yielto-maturity of 3%, is purchasea priof 105.657223 per 100 of pvalue. Assuming a 5-basis point change in yielto-maturity, the bons approximate mofieration is closest to: A.2.78. B.2.86. C.5.56. A is correct.The bons approximate mofieration is closest to 2.78. Approximate mofieration is calculateas:ApproxMour= [(PV−) − (PV+)] / [2×(ΔYiel×(PV0)]Lower yielto-maturity 5 bps to 2.95%: PV-=105.804232PV−= 5 / (1+0.0295) + 5/(1+0.0295)^2 + 105/ (1+0.0295)^3 =105.804232Increase yielto-maturity 5 bps to 3.05%: PV+=105.510494PV+= 5/ (1+0.0305) + 5/ (1+0.0305)^2 + 105/ (1+0.0305)^3 =105.510494PV0 = 105.657223, ΔYiel= 0.0005mofieration = (105.804232 − 105.510494)/(2×0.0005×105.657223) = 2.78ApproxMour=105.804232−105.5104942×0.0005×105.657223=2.78ApproxMour=\frac{105.804232-105.510494}{2\times0.0005\times105.657223}=2.78ApproxMour=2×0.0005×105.657223105.804232−105.510494​=2.78考点approximate mofieration解析分别算出利率上升5bps后的PV+(105.510494)和利率下降5bps后的PV-(105.804232),代入approximate mofieration公式即可,故A正确。 老师可以使用计算器进行计算吗,或者有更快地方法进行计算吗

2022-04-03 19:28 1 · 回答

请问先求出Macaulration ,然后用Macaulration除以(1+y)求出mofieration可以吗?算出来结果一样的。

2020-11-15 16:49 1 · 回答

我想问下助教截图里的公式和强化里的公式不太一样 如何从强化串讲的公式来解这个题目呢?

2020-11-07 22:02 1 · 回答

请问一定要严格按照公式求吗?能不能为了省时间,简化公式(V_-V0)/VO/TM? 虽然有误差,但是误差很小,可忽略不计,就找最接近的答案?谢谢!    

2019-10-05 03:43 1 · 回答