开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

柚柚_柚 · 2020年05月31日

问一道题:NO.PZ2020011101000020 [ FRM I ]

问题如下:

Suppose an hourly time series has a calendar effect where the hour of the day matters. How would the dummy variable approach be implemented to capture this calendar effect? How could differencing be used instead to remove the seasonality?

解释:

Let s = 24 represent the hour of the day in military time (e.g. 13 = 1 p.m.). Then Yt=g(t)+γ1I1t+...+γ23I23t+ϵtY_t = g(t) + \gamma_1I_{1t} + ... + \gamma_{23}I_{23t} + \epsilon_t.

Differencing this series can be achieved by looking at observation 24 periods (hours) apart from each other (the following presumes that the error terms are iid and normal):

Yt+24Yt=g(t+24)g(t)+ϵt+24ϵtY_{t + 24} - Y_t = g(t + 24) - g(t) + \epsilon_{t + 24} - \epsilon_t

Once the deterministic time trend is removed the remaining is a covariance-stationary MA(1) process.

Yt+24那条式子哪来的, 为什么remove后等于MA1 ? 谢谢
1 个答案
已采纳答案

袁园_品职助教 · 2020年06月01日

同学你好!

Yt+24那个式子就是把 Yt+24 和 Yt 分别代入 Yt 那个式子,由于 24 是一个循环,所以中间那些都是一样的,可以全部相减抵消。

所以 Yt+24−Yt 相当于是 remove 了 calendar effect,得到的表达式是一个只跟 当期扰动项  ϵt+24​ 和 前期扰动项 ϵt 有关的式子,即 MA(1)模型。

  • 1

    回答
  • 0

    关注
  • 456

    浏览
相关问题

NO.PZ2020011101000020 问题如下 Suppose hourly time series ha calenr effewhere the hour of the y matters. How woulthe mmy variable approaimplementeto capture this calenr effect? How coulfferencing useinsteto remove the seasonality? Let s = 24 represent the hour of the y in military time (e.g. 13 = 1 p.m.). Then Yt=g(t)+γ1I1t+...+γ23I23t+ϵtY_t = g(t) + \gamma_1I_{1t} + ... + \gamma_{23}I_{23t} + \epsilon_tYt​=g(t)+γ1​I1t​+...+γ23​I23t​+ϵt​.fferencing this series cachievelooking observation 24 perio (hours) apart from eaother (the following presumes ththe error terms are iiannormal):Yt+24−Yt=g(t+24)−g(t)+ϵt+24−ϵtY_{t + 24} - Y_t = g(t + 24) - g(t) + \epsilon_{t + 24} - \epsilon_tYt+24​−Yt​=g(t+24)−g(t)+ϵt+24​−ϵt​Onthe terministic time trenis removethe remaining is a covariance-stationary MA(1) process. 这道题不是非平稳时间序列么,应该是下一章的练习题把

2024-06-03 15:32 1 · 回答

NO.PZ2020011101000020 问题如下 Suppose hourly time series ha calenr effewhere the hour of the y matters. How woulthe mmy variable approaimplementeto capture this calenr effect? How coulfferencing useinsteto remove the seasonality? Let s = 24 represent the hour of the y in military time (e.g. 13 = 1 p.m.). Then Yt=g(t)+γ1I1t+...+γ23I23t+ϵtY_t = g(t) + \gamma_1I_{1t} + ... + \gamma_{23}I_{23t} + \epsilon_tYt​=g(t)+γ1​I1t​+...+γ23​I23t​+ϵt​.fferencing this series cachievelooking observation 24 perio (hours) apart from eaother (the following presumes ththe error terms are iiannormal):Yt+24−Yt=g(t+24)−g(t)+ϵt+24−ϵtY_{t + 24} - Y_t = g(t + 24) - g(t) + \epsilon_{t + 24} - \epsilon_tYt+24​−Yt​=g(t+24)−g(t)+ϵt+24​−ϵt​Onthe terministic time trenis removethe remaining is a covariance-stationary MA(1) process. g(t)是什么东西?讲义里哪里提到过?

2023-06-11 11:38 1 · 回答

NO.PZ2020011101000020 问题如下 Suppose hourly time series ha calenr effewhere the hour of the y matters. How woulthe mmy variable approaimplementeto capture this calenr effect? How coulfferencing useinsteto remove the seasonality? Let s = 24 represent the hour of the y in military time (e.g. 13 = 1 p.m.). Then Yt=g(t)+γ1I1t+...+γ23I23t+ϵtY_t = g(t) + \gamma_1I_{1t} + ... + \gamma_{23}I_{23t} + \epsilon_tYt​=g(t)+γ1​I1t​+...+γ23​I23t​+ϵt​.fferencing this series cachievelooking observation 24 perio (hours) apart from eaother (the following presumes ththe error terms are iiannormal):Yt+24−Yt=g(t+24)−g(t)+ϵt+24−ϵtY_{t + 24} - Y_t = g(t + 24) - g(t) + \epsilon_{t + 24} - \epsilon_tYt+24​−Yt​=g(t+24)−g(t)+ϵt+24​−ϵt​Onthe terministic time trenis removethe remaining is a covariance-stationary MA(1) process.

2022-07-28 21:34 1 · 回答

NO.PZ202001110100002024小时对应23个哑变量,第24个Yt是前23个哑变量为0。那么是不是要从第25小时开始下一个循环,对应第1小时呢?

2022-01-28 17:18 1 · 回答