开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Pina · 2020年03月30日

问一道题:NO.PZ2019010402000009

问题如下:

A dealer entered into a three-year interest rate swap with annual payments one year ago as a floating receiver. The current equilibrium fixed swap rate is 1.4853% (one year after the swap was originally entered). The initial swap rate is 1.82% and notional principle is $100 million.The value of this swap is:

选项:

A.

-670,598

B.

656,338

C.

-656,338

解释:

C is correct.

考点:interest swap 求value

解析:

Present Value Factor 1 = 11+1%×360360=0.990099\frac1{1+1\%\times\frac{360}{360}}=0.990099 

Present Value Factor 2 = 11+1.5%×720360=0.970874\frac1{1+1.5\%\times\frac{720}{360}}=0.970874

Ÿ投资者之前的合约是收浮动,付固定,现在进入反向合约,即收固定,付浮动。浮动端可以抵消,剩下的就是收新的固定利率,付之前合约中约定的swap rate。

Ÿ向上箭头:current equilibrium fixed swap rate,也就是以现在的市场条件签订一个到期日相同的合约的swap rate,它等于1.4853%。而且我们注意到,这是一个均衡的swap rate。Swap rate即固定利率,它可以看成是市场中浮动利率的打包价。所谓均衡就是说是无套利情况下计算出来的固定利率,即与interest swap rate的定价是一样的,就算题目没有告诉我们current equilibrium fixed swap rate,我们也能计算:

 10.9708740.990099+0.970874=1.4853%\frac{1-0.970874}{0.990099+0.970874}=1.4853\%

Ÿ 每一期的差额=1.4853%-1.82%(最后一期的本金相互抵消),然后向前折现,折现因子已经求出,分别为0.990099和0.970874,所以:(1.4853%1.82%)×(0.990099+0.970874)×100,000,000=656,338(1.4853\%-1.82\%)\times(0.990099+0.970874)\times100,000,000=-656,338  

老师好,这里说1时的等价固定利率是1.4853%, 为什么 答案看假设2时的等价固定利率也是1.4853%了呢?



每一期的差额=1.4853%-1.82%(最后一期的本金相互抵消),然后向前折现,折现因子已经求出,分别为0.990099和0.970874,所以:


(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338  

1 个答案

xiaowan_品职助教 · 2020年03月30日

嗨,从没放弃的小努力你好:


同学你好,因为这里1.4853% 和 1.82%是我们在不同时间点对swap 的定价,

回忆一下我们swap 定价的过程,就是假设每个付息点的固定利率相同,然后使固定端折现求和的结果和浮动端的相等,

回到这道题上,就也可以解释为什么每一期的差值都是一样了~


-------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!


  • 1

    回答
  • 0

    关注
  • 375

    浏览
相关问题

NO.PZ2019010402000009问题如下 A aler entereinto a three-yeinterest rate swwith annupayments one yeago a floating receiver. The current equilibrium fixeswrate is 1.4853% (one yeafter the swworiginally entere. The initiswrate is 1.82% annotionprinciple is $100 million.The value of this swis: A.-670,598B.656,338C.-656,338 C is correct.考点interest sw求value解析Present Value Factor 1 = 11+1%×360360=0.990099\frac1{1+1\%\times\frac{360}{360}}=0.9900991+1%×360360​1​=0.990099 Present Value Factor 2 = 11+1.5%×720360=0.970874\frac1{1+1.5\%\times\frac{720}{360}}=0.9708741+1.5%×360720​1​=0.970874Ÿ投资者之前的合约是收浮动,付固定,现在进入反向合约,即收固定,付浮动。浮动端可以抵消,剩下的就是收新的固定利率,付之前合约中约定的swrate。Ÿ向上箭头current equilibrium fixeswrate,也就是以现在的市场条件签订一个到期日相同的合约的swrate,它等于1.4853%。而且我们注意到,这是一个均衡的swrate。Swrate即固定利率,它可以看成是市场中浮动利率的打包价。所谓均衡就是说是无套利情况下计算出来的固定利率,即与interest swrate的定价是一样的,就算题目没有告诉我们current equilibrium fixeswrate,我们也能计算 1−0.9708740.990099+0.970874=1.4853%\frac{1-0.970874}{0.990099+0.970874}=1.4853\%0.990099+0.9708741−0.970874​=1.4853%Ÿ 每一期的差额=1.4853%-1.82%(最后一期的本金相互抵消),然后向前折现,折现因子已经求出,分别为0.990099和0.970874,所以(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338(1.4853\%-1.82\%)\times(0.990099+0.970874)\times100,000,000=-656,338(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338 题干写的是收浮方,为啥说进入了反向合约。

2024-09-15 12:44 1 · 回答

NO.PZ2019010402000009 问题如下 A aler entereinto a three-yeinterest rate swwith annupayments one yeago a floating receiver. The current equilibrium fixeswrate is 1.4853% (one yeafter the swworiginally entere. The initiswrate is 1.82% annotionprinciple is $100 million.The value of this swis: A.-670,598 B.656,338 C.-656,338 C is correct.考点interest sw求value解析Present Value Factor 1 = 11+1%×360360=0.990099\frac1{1+1\%\times\frac{360}{360}}=0.9900991+1%×360360​1​=0.990099 Present Value Factor 2 = 11+1.5%×720360=0.970874\frac1{1+1.5\%\times\frac{720}{360}}=0.9708741+1.5%×360720​1​=0.970874Ÿ投资者之前的合约是收浮动,付固定,现在进入反向合约,即收固定,付浮动。浮动端可以抵消,剩下的就是收新的固定利率,付之前合约中约定的swrate。Ÿ向上箭头current equilibrium fixeswrate,也就是以现在的市场条件签订一个到期日相同的合约的swrate,它等于1.4853%。而且我们注意到,这是一个均衡的swrate。Swrate即固定利率,它可以看成是市场中浮动利率的打包价。所谓均衡就是说是无套利情况下计算出来的固定利率,即与interest swrate的定价是一样的,就算题目没有告诉我们current equilibrium fixeswrate,我们也能计算 1−0.9708740.990099+0.970874=1.4853%\frac{1-0.970874}{0.990099+0.970874}=1.4853\%0.990099+0.9708741−0.970874​=1.4853%Ÿ 每一期的差额=1.4853%-1.82%(最后一期的本金相互抵消),然后向前折现,折现因子已经求出,分别为0.990099和0.970874,所以(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338(1.4853\%-1.82\%)\times(0.990099+0.970874)\times100,000,000=-656,338(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338 投资者之前的合约是收浮动,付固定,现在进入反向合约,即收固定,付浮动。浮动端可以抵消,剩下的就是收新的固定利率,付之前合约中约定的swrate。,哪里题目体现了所谓的反向?用画图法怎么计算呢,reset节点为什么不加F(360)

2024-08-21 23:04 1 · 回答

NO.PZ2019010402000009 问题如下 A aler entereinto a three-yeinterest rate swwith annupayments one yeago a floating receiver. The current equilibrium fixeswrate is 1.4853% (one yeafter the swworiginally entere. The initiswrate is 1.82% annotionprinciple is $100 million.The value of this swis: A.-670,598 B.656,338 C.-656,338 C is correct.考点interest sw求value解析Present Value Factor 1 = 11+1%×360360=0.990099\frac1{1+1\%\times\frac{360}{360}}=0.9900991+1%×360360​1​=0.990099 Present Value Factor 2 = 11+1.5%×720360=0.970874\frac1{1+1.5\%\times\frac{720}{360}}=0.9708741+1.5%×360720​1​=0.970874Ÿ投资者之前的合约是收浮动,付固定,现在进入反向合约,即收固定,付浮动。浮动端可以抵消,剩下的就是收新的固定利率,付之前合约中约定的swrate。Ÿ向上箭头current equilibrium fixeswrate,也就是以现在的市场条件签订一个到期日相同的合约的swrate,它等于1.4853%。而且我们注意到,这是一个均衡的swrate。Swrate即固定利率,它可以看成是市场中浮动利率的打包价。所谓均衡就是说是无套利情况下计算出来的固定利率,即与interest swrate的定价是一样的,就算题目没有告诉我们current equilibrium fixeswrate,我们也能计算 1−0.9708740.990099+0.970874=1.4853%\frac{1-0.970874}{0.990099+0.970874}=1.4853\%0.990099+0.9708741−0.970874​=1.4853%Ÿ 每一期的差额=1.4853%-1.82%(最后一期的本金相互抵消),然后向前折现,折现因子已经求出,分别为0.990099和0.970874,所以(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338(1.4853\%-1.82\%)\times(0.990099+0.970874)\times100,000,000=-656,338(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338 RT

2024-05-04 14:48 1 · 回答

NO.PZ2019010402000009 问题如下 A aler entereinto a three-yeinterest rate swwith annupayments one yeago a floating receiver. The current equilibrium fixeswrate is 1.4853% (one yeafter the swworiginally entere. The initiswrate is 1.82% annotionprinciple is $100 million.The value of this swis: A.-670,598 B.656,338 C.-656,338 C is correct.考点interest sw求value解析Present Value Factor 1 = 11+1%×360360=0.990099\frac1{1+1\%\times\frac{360}{360}}=0.9900991+1%×360360​1​=0.990099 Present Value Factor 2 = 11+1.5%×720360=0.970874\frac1{1+1.5\%\times\frac{720}{360}}=0.9708741+1.5%×360720​1​=0.970874Ÿ投资者之前的合约是收浮动,付固定,现在进入反向合约,即收固定,付浮动。浮动端可以抵消,剩下的就是收新的固定利率,付之前合约中约定的swrate。Ÿ向上箭头current equilibrium fixeswrate,也就是以现在的市场条件签订一个到期日相同的合约的swrate,它等于1.4853%。而且我们注意到,这是一个均衡的swrate。Swrate即固定利率,它可以看成是市场中浮动利率的打包价。所谓均衡就是说是无套利情况下计算出来的固定利率,即与interest swrate的定价是一样的,就算题目没有告诉我们current equilibrium fixeswrate,我们也能计算 1−0.9708740.990099+0.970874=1.4853%\frac{1-0.970874}{0.990099+0.970874}=1.4853\%0.990099+0.9708741−0.970874​=1.4853%Ÿ 每一期的差额=1.4853%-1.82%(最后一期的本金相互抵消),然后向前折现,折现因子已经求出,分别为0.990099和0.970874,所以(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338(1.4853\%-1.82\%)\times(0.990099+0.970874)\times100,000,000=-656,338(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338 我理解的是 T= 3 时利差就是1.4853%-1.82%=-0.3617%,现在在T=1 时点, 那么 就应该用MRR2 来折现。 不理解 为什么说利差是发生在第2年和第3年。

2024-04-14 11:30 1 · 回答

NO.PZ2019010402000009 问题如下 A aler entereinto a three-yeinterest rate swwith annupayments one yeago a floating receiver. The current equilibrium fixeswrate is 1.4853% (one yeafter the swworiginally entere. The initiswrate is 1.82% annotionprinciple is $100 million.The value of this swis: A.-670,598 B.656,338 C.-656,338 C is correct.考点interest sw求value解析Present Value Factor 1 = 11+1%×360360=0.990099\frac1{1+1\%\times\frac{360}{360}}=0.9900991+1%×360360​1​=0.990099 Present Value Factor 2 = 11+1.5%×720360=0.970874\frac1{1+1.5\%\times\frac{720}{360}}=0.9708741+1.5%×360720​1​=0.970874Ÿ投资者之前的合约是收浮动,付固定,现在进入反向合约,即收固定,付浮动。浮动端可以抵消,剩下的就是收新的固定利率,付之前合约中约定的swrate。Ÿ向上箭头current equilibrium fixeswrate,也就是以现在的市场条件签订一个到期日相同的合约的swrate,它等于1.4853%。而且我们注意到,这是一个均衡的swrate。Swrate即固定利率,它可以看成是市场中浮动利率的打包价。所谓均衡就是说是无套利情况下计算出来的固定利率,即与interest swrate的定价是一样的,就算题目没有告诉我们current equilibrium fixeswrate,我们也能计算 1−0.9708740.990099+0.970874=1.4853%\frac{1-0.970874}{0.990099+0.970874}=1.4853\%0.990099+0.9708741−0.970874​=1.4853%Ÿ 每一期的差额=1.4853%-1.82%(最后一期的本金相互抵消),然后向前折现,折现因子已经求出,分别为0.990099和0.970874,所以(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338(1.4853\%-1.82\%)\times(0.990099+0.970874)\times100,000,000=-656,338(1.4853%−1.82%)×(0.990099+0.970874)×100,000,000=−656,338 这是啥考点?为啥进入方向对冲合约,哪里写的?

2024-04-13 20:20 1 · 回答