开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

kkbis · 2020年03月19日

问一道题:NO.PZ2016082402000002

问题如下:

Lisa Smith, the treasurer of Bank AAA, has $100 million to invest for one year. She has identified three alternative one-year certificates of deposit (CDs), with different compounding periods and annual rates. CD1: monthly, 7.82%; CD2: quarterly, 8.00%; CD3: semiannually, 8.05%; and CD4: continuous, 7.95%. Which CD has the highest effective annual rate (EAR)?

选项:

A.

CD1

B.

CD2

C.

CD3

D.

CD4

解释:

ANSWER: D

A dollar initially invested will grow to CD1   (1+7.82%12)12=1.08107\;{(1+\frac{7.82\%}{12})}^{12}=1.08107, CD2:(1+8.00%4)4=1.08243{(1+\frac{8.00\%}4)}^4=1.08243, CD3:(1+8.05%2)2=1.08212{(1+\frac{8.05\%}2)}^2=1.08212 , CD4: e7.95%=1.08275e^{7.95\%}=1.08275. Hence, CD4 gives the highest final amount and EAR.

老师,正儿八经计算EAR的时候,是不是还要在这个基础上减1?

1 个答案

小刘_品职助教 · 2020年03月19日

同学你好,你的考虑是对的,优秀:-)

  • 1

    回答
  • 0

    关注
  • 479

    浏览
相关问题