开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

张人天 · 2020年03月14日

问一道题:NO.PZ2015120204000034 [ CFA II ]

问题如下:

Paul suggests the following step which would be repeated every quarter.

Step 3 For each of the 20 different groups, we use labeled data to train a model that will predict the five stocks (in any given group) that are most likely to become acquisition targets in the next one year.

Comparing two ML models that could be used to accomplish Step 3, which statement(s) best describe(s) the advantages of using Classification and Regression Trees (CART) instead of K-Nearest Neighbor (KNN)?

Statement I For CART there is no requirement to specify an initial hyperparameter (like K).

Statement II For CART there is no requirement to specify a similarity (or distance) measure.

Statement III For CART the output provides a visual explanation for the prediction

选项:

A.

Statement I only

B.

Statement III only

C.

Statements I, II and III

解释:

C is correct. The advantages of using CART over KNN to classify companies into two categories (“not acquisition target” and “acquisition target”), include all of the following: For CART there are no requirements to specify an initial hyperparameter (like K) or a similarity (or distance) measure as with KNN, and CART provides a visual explanation for the prediction (i.e., the feature variables and their cut-off values at each node).

A is incorrect, because CART provides all of the advantages indicated in Statements I, II and III.

B is incorrect, because CART provides all of the advantages indicated in Statements I, II and III.

第二个statement是什么意思没理解
1 个答案

星星_品职助教 · 2020年03月14日

同学你好,

Statement II 说的是对于CART这种方法并不需要一个similarity (or distance) measure,这个是正确的。KNN才需要距离的具体衡量方式,CART的过程里不涉及到距离

  • 1

    回答
  • 1

    关注
  • 546

    浏览
相关问题

NO.PZ2015120204000034 问题如下 Paul suggests the following step whiwoulrepeateevery quarter.Step 3 For eaof the 20 fferent groups, we use labeleta to train a mol thwill prethe five stocks (in any given group) thare most likely to become acquisition targets in the next one year. Comparing two ML mols thcouluseto accomplish Step 3, whistatement(s) best scribe(s) the aantages of using Classification anRegression Trees (CART) insteof K-Nearest Neighbor (KNN)? Statement I For CART there is no requirement to specify initihyperparameter (like K).Statement II For CART there is no requirement to specify a similarity (or stance) measure.Statement III For CART the output provis a visuexplanation for the prection A.Statement I only B.Statement III only C.Statements I, II anIII C is correct. The aantages of using CART over KNN to classify companies into two categories (“not acquisition target” an“acquisition target”), inclu all of the following: For CART there are no requirements to specify initihyperparameter (like K) or a similarity (or stance) measure with KNN, anCART provis a visuexplanation for the prection (i.e., the feature variables antheir cut-off values eano).A is incorrect, because CART provis all of the aantages incatein Statements I, II anIII. B is incorrect, because CART provis all of the aantages incatein Statements I, II anIII. CART也需要设置超参数吧?regularization parameters每一个no中的single feature和cutoff value不也是一种similarity吗?

2023-10-27 11:56 1 · 回答

NO.PZ2015120204000034 有点不明白为什么A是对的

2021-03-09 03:50 2 · 回答

老师,我和前面的同学问题差不多,我看了一下材料上,K-means clustering的优势里也写了visualize the ta

2020-08-06 13:24 2 · 回答

老师讲过,KNN也会provi a visuprection

2020-01-23 22:16 1 · 回答