开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Spencer · 2020年03月07日

问一道题:NO.PZ201710100100000102

* 问题详情,请 查看题干

问题如下:


2. The arbitrage opportunity identified by Zapata can be exploited with:

选项:

A.

Strategy 1: Buy $50,000 Fund A and $50,000 Fund B; sell short $100,000 Fund C.

B.

Strategy 2: Buy $60,000 Fund A and $40,000 Fund B; sell short $100,000 Fund C.

C.

Strategy 3: Sell short $60,000 of Fund A and $40,000 of Fund B; buy $100,000 Fund C

解释:

C is correct.

The expected return and factor sensitivities of a portfolio with a 60% weight in Fund A and a 40% weight in Fund B are calculated as weighted averages of the expected returns and factor sensitivities of Funds A and B: Expected return of Portfolio 60/40 = (0.60)(0.02) + (0.40)(0.04) = 0.028, or 2.8% Factor sensitivity of Portfolio 60/40 = (0.60)(0.5) + (0.40)(1.5) = 0.9

The factor sensitivity of Portfolio 60/40 is identical to that of Fund C; therefore, this strategy results in no factor risk relative to Portfolio C. However, Fund C’s expected return of 3.0% is higher than Portfolio 60/40’s expected return of 2.8%. This difference supports Strategy 3: buying Fund C and selling short Portfolio 60/40 to exploit the arbitrage opportunity.

考点:APT模型

解析:

根据题干,AB组合符合APT模型,而C不符合,因此存在套利空间。

首先求单因子的APT模型,公式写为:E(R)=Rf+βλ,代入AB组合的已知数:

Rf+0.5λ=0.02

Rf+1.5λ=0.04,

两个方程两个未知数,得Rf=1%,λ=2%。

根据E(R)=1%+β*2%,C组合在APT模型下的预期收益率为1%+0.9*2%=2.8%,而现在表格中给出的C组合的实际收益率为3%。所以C组合在市场上的实际收益率3%是高于APT模型的预期收益率,那么投资者可以通过long C组合的实际收益率,同时short APT模型下通过AB合成的C组合,来获得无风险收益率。

因此我们要找到AB组合的权重,使得合成后新组合的factor sensitivy=C组合的factor sensitivy,列出方程:

Wa+Wb=1

0.5Wa+1.5Wb=0.9

因此Wa=60%, Wb=40%

所以通过long1个C组合,short (60%的A组合+40%的B组合),可以获得套利机会。因此符合这样的头寸和投资比例的只有C选项。

老师请问,Exhibit 1的Expected Return是指实际return,APT方程解出来后才是预测的return,所以Exhibit 1的Expected Return需要注意并不是预测值,是这样理解吗?

2 个答案

丹丹_品职答疑助手 · 2020年07月11日

同学你好,正是因为根据APT我们认为这个资产应该会带来2.8%的收益,但是实际收益是3%二者不相等才能带来套利机会。请知悉

丹丹_品职答疑助手 · 2020年03月08日

同学你好,你对APT模型的理解有误,

根据原版书:Arbitrage is a risk-free operation that requires no net investment of money but earnsan expected positive net profit.An arbitrage opportunity is an opportunity to conduct an arbitrage—an opportunity to earn an expected positive net profit without  risk and with no net investment of money.套利是指不承担任何风险而获得正的期望收益的活动。所以套利本身也是针对期望收益的一种行为。表格1是期望收益。

APT 模型中,我们假设不存在套利机会(No arbitrage opportunities exist among well-diversified portfolios.)。所以当A 和B组成的组合,收益率高于C,套利机会存在,不符合APT模型。
 

  • 2

    回答
  • 0

    关注
  • 963

    浏览
相关问题

NO.PZ201710100100000102 问题如下 2. The arbitrage opportunity intifieZapata cexploitewith: A.Strategy 1: Buy $50,000 FunA an$50,000 Funsell short $100,000 Fun B.Strategy 2: Buy $60,000 FunA an$40,000 Funsell short $100,000 Fun C.Strategy 3: Sell short $60,000 of FunA an$40,000 of Funbuy $100,000 Fun C is correct.The expectereturn anfactor sensitivities of a portfolio with a 60% weight in FunA ana 40% weight in FunB are calculateweighteaverages of the expectereturns anfactor sensitivities of Fun A anExpectereturn of Portfolio 60/40 = (0.60)(0.02) + (0.40)(0.04) = 0.028, or 2.8% Factor sensitivity of Portfolio 60/40 = (0.60)(0.5) + (0.40)(1.5) = 0.9The factor sensitivity of Portfolio 60/40 is inticto thof Funtherefore, this strategy results in no factor risk relative to Portfolio However, FunC’s expectereturn of 3.0% is higher thPortfolio 60/40’s expectereturn of 2.8%. This fferensupports Strategy 3: buying FunC anselling short Portfolio 60/40 to exploit the arbitrage opportunity.考点APT模型解析根据题干,AB组合符合APT模型,而C不符合,因此存在套利空间。首先求单因子的APT模型,公式写为E(R)=Rf+βλ,代入AB组合的已知数Rf+0.5λ=0.02Rf+1.5λ=0.04,两个方程两个未知数,得Rf=1%,λ=2%。根据E(R)=1%+β*2%,C组合在APT模型下的预期收益率为1%+0.9*2%=2.8%,而现在表格中给出的C组合的实际收益率为3%。所以C组合在市场上的实际收益率3%是高于APT模型的预期收益率,那么投资者可以通过long C组合的实际收益率,同时short APT模型下通过AB合成的C组合,来获得无风险收益率。因此我们要找到AB组合的权重,使得合成后新组合的factor sensitivy=C组合的factor sensitivy,列出方程Wa+Wb=10.5Wa+1.5Wb=0.9因此Wa=60%, Wb=40%所以通过long1个C组合,short (60%的A组合+40%的B组合),可以获得套利机会。因此符合这样的头寸和投资比例的只有 根据表1,是怎么知道用A和B的组合,去和C组合比较和套利呢?为什么不是AC和B,或BC和仅仅是因为题目里面写了A B are well versifie这个地方的原理能下么?

2022-10-18 20:32 1 · 回答

NO.PZ201710100100000102 问题如下 2. The arbitrage opportunity intifieZapata cexploitewith: A.Strategy 1: Buy $50,000 FunA an$50,000 Funsell short $100,000 Fun B.Strategy 2: Buy $60,000 FunA an$40,000 Funsell short $100,000 Fun C.Strategy 3: Sell short $60,000 of FunA an$40,000 of Funbuy $100,000 Fun C is correct.The expectereturn anfactor sensitivities of a portfolio with a 60% weight in FunA ana 40% weight in FunB are calculateweighteaverages of the expectereturns anfactor sensitivities of Fun A anExpectereturn of Portfolio 60/40 = (0.60)(0.02) + (0.40)(0.04) = 0.028, or 2.8% Factor sensitivity of Portfolio 60/40 = (0.60)(0.5) + (0.40)(1.5) = 0.9The factor sensitivity of Portfolio 60/40 is inticto thof Funtherefore, this strategy results in no factor risk relative to Portfolio However, FunC’s expectereturn of 3.0% is higher thPortfolio 60/40’s expectereturn of 2.8%. This fferensupports Strategy 3: buying FunC anselling short Portfolio 60/40 to exploit the arbitrage opportunity.考点APT模型解析根据题干,AB组合符合APT模型,而C不符合,因此存在套利空间。首先求单因子的APT模型,公式写为E(R)=Rf+βλ,代入AB组合的已知数Rf+0.5λ=0.02Rf+1.5λ=0.04,两个方程两个未知数,得Rf=1%,λ=2%。根据E(R)=1%+β*2%,C组合在APT模型下的预期收益率为1%+0.9*2%=2.8%,而现在表格中给出的C组合的实际收益率为3%。所以C组合在市场上的实际收益率3%是高于APT模型的预期收益率,那么投资者可以通过long C组合的实际收益率,同时short APT模型下通过AB合成的C组合,来获得无风险收益率。因此我们要找到AB组合的权重,使得合成后新组合的factor sensitivy=C组合的factor sensitivy,列出方程Wa+Wb=10.5Wa+1.5Wb=0.9因此Wa=60%, Wb=40%所以通过long1个C组合,short (60%的A组合+40%的B组合),可以获得套利机会。因此符合这样的头寸和投资比例的只有 老师,APT得到的不是合理收益率水平吗?既然C现在的收益率水平3%是大于均衡收益率2.8%的,不是说明收益率被高估应该卖出才是吗?我有点搞不清头寸方向,烦请老师解答,谢谢

2022-08-21 11:52 2 · 回答

NO.PZ201710100100000102 问题如下 2. The arbitrage opportunity intifieZapata cexploitewith: A.Strategy 1: Buy $50,000 FunA an$50,000 Funsell short $100,000 Fun B.Strategy 2: Buy $60,000 FunA an$40,000 Funsell short $100,000 Fun C.Strategy 3: Sell short $60,000 of FunA an$40,000 of Funbuy $100,000 Fun C is correct.The expectereturn anfactor sensitivities of a portfolio with a 60% weight in FunA ana 40% weight in FunB are calculateweighteaverages of the expectereturns anfactor sensitivities of Fun A anExpectereturn of Portfolio 60/40 = (0.60)(0.02) + (0.40)(0.04) = 0.028, or 2.8% Factor sensitivity of Portfolio 60/40 = (0.60)(0.5) + (0.40)(1.5) = 0.9The factor sensitivity of Portfolio 60/40 is inticto thof Funtherefore, this strategy results in no factor risk relative to Portfolio However, FunC’s expectereturn of 3.0% is higher thPortfolio 60/40’s expectereturn of 2.8%. This fferensupports Strategy 3: buying FunC anselling short Portfolio 60/40 to exploit the arbitrage opportunity.考点APT模型解析根据题干,AB组合符合APT模型,而C不符合,因此存在套利空间。首先求单因子的APT模型,公式写为E(R)=Rf+βλ,代入AB组合的已知数Rf+0.5λ=0.02Rf+1.5λ=0.04,两个方程两个未知数,得Rf=1%,λ=2%。根据E(R)=1%+β*2%,C组合在APT模型下的预期收益率为1%+0.9*2%=2.8%,而现在表格中给出的C组合的实际收益率为3%。所以C组合在市场上的实际收益率3%是高于APT模型的预期收益率,那么投资者可以通过long C组合的实际收益率,同时short APT模型下通过AB合成的C组合,来获得无风险收益率。因此我们要找到AB组合的权重,使得合成后新组合的factor sensitivy=C组合的factor sensitivy,列出方程Wa+Wb=10.5Wa+1.5Wb=0.9因此Wa=60%, Wb=40%所以通过long1个C组合,short (60%的A组合+40%的B组合),可以获得套利机会。因此符合这样的头寸和投资比例的只有 老师, 我看答案中 这一步“首先求单因子的APT模型,公式写为E(R)=Rf+βλ,代入AB组合的已知数Rf+0.5λ=0.02Rf+1.5λ=0.04,两个方程两个未知数,得Rf=1%,λ=2%。根据E(R)=1%+β*2%,用这个方法先算出C组合在APT模型下的预期收益率为1%+0.9*2%=2.8%,”请问既然从题目中已经funA和B是well versifieportfolio,而C不确定。那可不可以跳过上面那些步骤,直接用A B的sensitivity 直接找到可以模拟乘funC sensitivity的配比, 然后根据这个配比算出用A B合成出和相同sensitivity的return = 0.028再用0.028 与C 现在的return 0.03来进行判断和 C之间的低买高卖呢谢谢

2022-07-09 15:51 1 · 回答

NO.PZ201710100100000102

2022-01-15 19:49 1 · 回答

NO.PZ201710100100000102 答案是这么写的根据题干,AB组合符合APT模型,而C不符合,因此存在套利空间。这个是怎么理解?请一下。谢谢

2021-10-10 00:00 1 · 回答