开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

kevinzhu · 2020年02月26日

问一道题:NO.PZ2016031001000074

问题如下:

A bond with 20 years remaining until maturity is currently trading for 111 per 100 of par value. The bond offers a 5% coupon rate with interest paid semiannually. The bond’s annual yield-to-maturity is closest to:

选项:

A.

2.09%.

B.

4.18%.

C.

4.50%.

解释:

B is correct.

The formula for calculating this bond’s yield-to-maturity is:

PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3++PMT(1+r)39+PMT+FV(1+r)40PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\cdots+\frac{PMT}{{(1+r)}^{39}}+\frac{PMT+FV}{{(1+r)}^{40}}

where:

PV = present value, or the price of the bond

PMT = coupon payment per period

FV = future value paid at maturity, or the par value of the bond

r = market discount rate, or required rate of return per period

111=2.5(1+r)1+2.5(1+r)2+2.5(1+r)3++2.5(1+r)39+2.5+100(1+r)40111=\frac{2.5}{{(1+r)}^1}+\frac{2.5}{{(1+r)}^2}+\frac{2.5}{{(1+r)}^3}+\cdots+\frac{2.5}{{(1+r)}^{39}}+\frac{2.5+100}{{(1+r)}^{40}}

r = 0.0209

To arrive at the annualized yield-to-maturity, the semiannual rate of 2.09% must be multiplied by two. Therefore, the yield-to-maturity is equal to 2.09% × 2 = 4.18%.

算出来的2.09%为何是the semiannual rate 而不是annual rate?

1 个答案

吴昊_品职助教 · 2020年02月26日

这道题是半年付息一次,所以我们折现用到的r是半年的要求收益率,“r=required rate of return per period”。因此我们最后还要转换一步,将半年的利率×2得到annual rate。