开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

山风泽笑 · 2020年02月25日

问一道题:NO.PZ201602270200001904 第4小题 [ CFA II ]

* 问题详情,请 查看题干

没明白这道题里的forward rate如何应用到折现?forward rate不是用作中期利率来折现吗?为什么没有给出波动率?问题如下图:

选项:

A.

B.

C.

解释:

1 个答案

吴昊_品职助教 · 2020年02月26日

二叉树的核心还是forward rate,只不过是每一期的forward rate有不同的可能性。波动率的不同只影响二叉树树杈的分散程度。表4中已经将各期的forward rate标了出来,直接将现金流二叉树和利率二叉树匹配起来折现即可。用二叉树求不含权债券的价格,本质还是用implied forward rate,也就是spot rate求债券价格。

  • 1

    回答
  • 0

    关注
  • 503

    浏览
相关问题

NO.PZ201602270200001904 问题如下 4. Baseon Exhibit 4 anusing Metho2, the correprifor BonX is closest to: A.97.2998. B.109.0085. C.115.0085. B is correct.The first step is to intify the cash flows:Next, calculate the cash flows for eayebeginning with Ye3 anmove backwar to Ye1:Ye3: 0.5×[(1061.06)+(1061.06)]+6=106.00000.5\times\lbrack(\frac{106}{1.06})+(\frac{106}{1.06})\rbrack+6=106.00000.5×[(1.06106​)+(1.06106​)]+6=106.00000.5×[(1061.05)+(1061.05)]+6=106.95240.5\times\lbrack(\frac{106}{1.05})+(\frac{106}{1.05})\rbrack+6=106.95240.5×[(1.05106​)+(1.05106​)]+6=106.95240.5×[(1061.03)+(1061.03)]+6=108.91260.5\times\lbrack(\frac{106}{1.03})+(\frac{106}{1.03})\rbrack+6=108.91260.5×[(1.03106​)+(1.03106​)]+6=108.9126Ye2:0.5×[(106.00001.04)+(106.95241.04)]+6=108.38100.5\times\lbrack(\frac{106.0000}{1.04})+(\frac{106.9524}{1.04})\rbrack+6=108.38100.5×[(1.04106.0000​)+(1.04106.9524​)]+6=108.38100.5×[(106.95241.02)+(108.91261.02)]+6=111.81620.5\times\lbrack(\frac{106.9524}{1.02})+(\frac{108.9126}{1.02})\rbrack+6=111.81620.5×[(1.02106.9524​)+(1.02108.9126​)]+6=111.8162Ye1:0.5×[(108.38101.01)+(111.81261.01)]=109.00850.5\times\lbrack(\frac{108.3810}{1.01})+(\frac{111.8126}{1.01})\rbrack=109.00850.5×[(1.01108.3810​)+(1.01111.8126​)]=109.0085A is incorrebecause the coupon payment is not accountefor eano calculation. C is incorrebecause it assumes tha coupon is paiin Ye1 (time zero) when no coupon payment is paitime zero. 可不可以用二叉树的图 来解析下这道题?

2024-04-05 10:41 2 · 回答

109.0085. 115.0085. B is correct. The first step is to intify the cash flows: Next, calculate the cash flows for eayebeginning with Ye3 anmove backwar to Ye1: Ye3: 0.5×[(1061.06)+(1061.06)]+6=106.00000.5\times\lbrack(\frac{106}{1.06})+(\frac{106}{1.06})\rbrack+6=106.00000.5×[(1.06106​)+(1.06106​)]+6=106.0000 0.5×[(1061.05)+(1061.05)]+6=106.95240.5\times\lbrack(\frac{106}{1.05})+(\frac{106}{1.05})\rbrack+6=106.95240.5×[(1.05106​)+(1.05106​)]+6=106.9524 0.5×[(1061.03)+(1061.03)]+6=108.91260.5\times\lbrack(\frac{106}{1.03})+(\frac{106}{1.03})\rbrack+6=108.91260.5×[(1.03106​)+(1.03106​)]+6=108.9126 Ye2: 0.5×[(106.00001.04)+(106.95241.04)]+6=108.38100.5\times\lbrack(\frac{106.0000}{1.04})+(\frac{106.9524}{1.04})\rbrack+6=108.38100.5×[(1.04106.0000​)+(1.04106.9524​)]+6=108.3810 0.5×[(106.95241.02)+(108.91261.02)]+6=111.81620.5\times\lbrack(\frac{106.9524}{1.02})+(\frac{108.9126}{1.02})\rbrack+6=111.81620.5×[(1.02106.9524​)+(1.02108.9126​)]+6=111.8162 Ye1: 0.5×[(108.38101.01)+(111.81261.01)]=109.00850.5\times\lbrack(\frac{108.3810}{1.01})+(\frac{111.8126}{1.01})\rbrack=109.00850.5×[(1.01108.3810​)+(1.01111.8126​)]=109.0085 A is incorrebecause the coupon payment is not accountefor eano calculation. C is incorrebecause it assumes tha coupon is paiin Ye1 (time zero) when no coupon payment is paitime zero.请问在从y3折现到y2的时候,不是应该是这样计算的吗? (106/1.06+106/1.06)*2/1=100吗 为什么还要+6的coupon不是已经计算过一遍了吗? 和最新版的基础班讲义第92页的标准算法有出入

2020-06-30 00:11 1 · 回答

    请问这道题为什么还要zhe折Y3的利率,三年的债券不是在二叉树上到T2就好了吗?

2019-06-07 16:47 2 · 回答

请问这里的折现率为什么不用上一年的?能帮助整理下哪里的二叉树用上年的吗?

2019-04-22 20:39 1 · 回答