开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

粉红豹 · 2020年02月25日

问一道题:NO.PZ2018113001000052

问题如下:

Olivia, a fund manager, sells $50,000 vega notional of a one-year variance swap on the S&P 500 at a strike of 20% (quoted as annual volatility).

Now six months have passed, and the S&P 500 has experienced a realized volatility of 16% (annualized). On the same day, the fair strike of a new six-month variance swap on the S&P 500 is 19%.

The the current value of the variance swap sold by Olivia (note that the annual interest rate is 2.5%) is:

选项:

A.

$112,963

B.

$ 998,653

C.

$ 159,228

解释:

A is correct.

Volatility strike on existing swap = 20.

Variance strike on existing swap = 20^2 = 400.

Variance notional = Vega notional/(2*Strike)=50000/(2*20)=1250.

RealizedVol(0,6)^2 = 16^2 = 256.

ImpliedVol(6,12)^2 = 19^2 = 361.

PVt(T) = 1/[1 + (2.5% × 6/12)] = 0.987654

The current value of the swap is

VarSwapt = 1,250 × (0.987654) × [(6/12) × 256 + (6/12) × 361 – 400]

= –$112,962.9263.

Given that Olivia is short the variance swap, the mark-to-market value is positive for her, and it equals $112,963.

老师,请教下,VarSwapt = 1,250 × (0.987654) × [(6/12) × 256 + (6/12) × 361 – 400],这个公式中的 256和361 明显是用的annualized volatility的平方,请教下, 这里为什么不需要天化?


此处是否和以前的平方根法则矛盾?

联想下我们的平方根法则,σannual = 根号下252 * σ daily,这里的daily不就是“单日的volatility”吗?不是年化的呀?

3 个答案

xiaowan_品职助教 · 2020年02月26日

同学你好,前半年的realized volatility 是16^2,前半年的daily vol=16^2/252, 后半年的implied volatility 是19^2,后半年的daily vol=19^2/252,
那么平均的daily vol就是(16^2+19^2)/(252/2),将daily vol转成年化即*252 就得到(16^2+19^2)/2,也就等于直接把两个variance加权平均。

xiaowan_品职助教 · 2020年02月25日

同学你好,平方根法则两边都是standard deviation,两边平方才得到variance。variance swap求value的公式中使用的volatility都是variance,我想这两者并不矛盾哈。

粉红豹 · 2020年02月26日

是类似的,你把平方根法则两边都平方,形式和我们这个加权平均就类似了,但平方根法则里面是有daily volatility之类的非年化的指标,此处没有,为什么?

xiaowan_品职助教 · 2020年02月25日

嗨,从没放弃的小努力你好:


同学你好,因为我们所求variance swap的value时,公式中所使用的Realized volatility,Implied volatility以及 Strike,都是使用年化波动率的表达形式。

所以即便题目里出现非年化的表述方式,我们也要将其统一至年化。

题目中并没有给出单日的波动率,也并不需要将年化折算成单日哈。


-------------------------------
加油吧,让我们一起遇见更好的自己!


粉红豹 · 2020年02月25日

我的意思是,平方根法则其实也是同样的加权的道理,何老师也讲到了这个推导。那么同理,这种加权平均也应该是遵从同样的原理,所以,您能否解释下,为什么平方根法则中不需要年化,这里需要年化呢?

  • 3

    回答
  • 2

    关注
  • 520

    浏览
相关问题

NO.PZ2018113001000052 问题如下 Olivia funmanager, sells $50,000 vega notionof a one-yevarianswon the S P 500 a strike of 20% (quoteannuvolatility).Now six months have passe anthe S P 500 hexperiencea realizevolatility of 16% (annualize. On the same y, the fair strike of a new six-month varianswon the S P 500 is 19%.The the current value of the varianswsolOlivia (note ththe annuinterest rate is 2.5%) is: A.$112,963 B.$ 998,653 C.$ 159,228 A is correct.Volatility strike on existing sw= 20.Varianstrike on existing sw= 20^2 = 400.Variannotion= Vega notional/(2*Strike)=50000/(2*20)=1250.Realizeol(0,6)^2 = 16^2 = 256.Implieol(6,12)^2 = 19^2 = 361.PVt(T) = 1/[1 + (2.5% × 6/12)] = 0.987654The current value of the swisVarSwapt = 1,250 × (0.987654) × [(6/12) × 256 + (6/12) × 361 – 400]= –$112,962.9263.Given thOlivia is short the varianswap, the mark-to-market value is positive for her, anit equals $112,963.中文解析本题考察的是对varianswap求value。直接带入公式计算即可。需要注意以下两点1. 该公式是站在long position的角度,而本题问的是short position,因此注意最后的结果需要加负号2. strike,implievolatility以及realizevolatility在代入计算时,不加百分号,只取百分号前面的数字。 这里给的前半年实现的volatile是16%,这个是年化的。如果算半年的,为什么不用8%呢?谢谢?

2024-08-21 23:46 1 · 回答

NO.PZ2018113001000052 问题如下 Olivia funmanager, sells $50,000 vega notionof a one-yevarianswon the S P 500 a strike of 20% (quoteannuvolatility).Now six months have passe anthe S P 500 hexperiencea realizevolatility of 16% (annualize. On the same y, the fair strike of a new six-month varianswon the S P 500 is 19%.The the current value of the varianswsolOlivia (note ththe annuinterest rate is 2.5%) is: A.$112,963 B.$ 998,653 C.$ 159,228 A is correct.Volatility strike on existing sw= 20.Varianstrike on existing sw= 20^2 = 400.Variannotion= Vega notional/(2*Strike)=50000/(2*20)=1250.Realizeol(0,6)^2 = 16^2 = 256.Implieol(6,12)^2 = 19^2 = 361.PVt(T) = 1/[1 + (2.5% × 6/12)] = 0.987654The current value of the swisVarSwapt = 1,250 × (0.987654) × [(6/12) × 256 + (6/12) × 361 – 400]= –$112,962.9263.Given thOlivia is short the varianswap, the mark-to-market value is positive for her, anit equals $112,963.中文解析本题考察的是对varianswap求value。直接带入公式计算即可。需要注意以下两点1. 该公式是站在long position的角度,而本题问的是short position,因此注意最后的结果需要加负号2. strike,implievolatility以及realizevolatility在代入计算时,不加百分号,只取百分号前面的数字。 请问题目中variance已经是Volatility的平方概念,为何公式里还是需要用平方计算?

2024-04-20 17:50 2 · 回答

NO.PZ2018113001000052 问题如下 Olivia funmanager, sells $50,000 vega notionof a one-yevarianswon the S P 500 a strike of 20% (quoteannuvolatility).Now six months have passe anthe S P 500 hexperiencea realizevolatility of 16% (annualize. On the same y, the fair strike of a new six-month varianswon the S P 500 is 19%.The the current value of the varianswsolOlivia (note ththe annuinterest rate is 2.5%) is: A.$112,963 B.$ 998,653 C.$ 159,228 A is correct.Volatility strike on existing sw= 20.Varianstrike on existing sw= 20^2 = 400.Variannotion= Vega notional/(2*Strike)=50000/(2*20)=1250.Realizeol(0,6)^2 = 16^2 = 256.Implieol(6,12)^2 = 19^2 = 361.PVt(T) = 1/[1 + (2.5% × 6/12)] = 0.987654The current value of the swisVarSwapt = 1,250 × (0.987654) × [(6/12) × 256 + (6/12) × 361 – 400]= –$112,962.9263.Given thOlivia is short the varianswap, the mark-to-market value is positive for her, anit equals $112,963.中文解析本题考察的是对varianswap求value。直接带入公式计算即可。需要注意以下两点1. 该公式是站在long position的角度,而本题问的是short position,因此注意最后的结果需要加负号2. strike,implievolatility以及realizevolatility在代入计算时,不加百分号,只取百分号前面的数字。 半年的折现率为什么不是用(1+2.5%)^0.5折现呢?

2024-01-29 11:35 1 · 回答

NO.PZ2018113001000052问题如下Olivia funmanager, sells $50,000 vega notionof a one-yevarianswon the S P 500 a strike of 20% (quoteannuvolatility).Now six months have passe anthe S P 500 hexperiencea realizevolatility of 16% (annualize. On the same y, the fair strike of a new six-month varianswon the S P 500 is 19%.The the current value of the varianswsolOlivia (note ththe annuinterest rate is 2.5%) is: A.$112,963 B.$ 998,653 C.$ 159,228 A is correct.Volatility strike on existing sw= 20.Varianstrike on existing sw= 20^2 = 400.Variannotion= Vega notional/(2*Strike)=50000/(2*20)=1250.Realizeol(0,6)^2 = 16^2 = 256.Implieol(6,12)^2 = 19^2 = 361.PVt(T) = 1/[1 + (2.5% × 6/12)] = 0.987654The current value of the swisVarSwapt = 1,250 × (0.987654) × [(6/12) × 256 + (6/12) × 361 – 400]= –$112,962.9263.Given thOlivia is short the varianswap, the mark-to-market value is positive for her, anit equals $112,963.中文解析本题考察的是对varianswap求value。直接带入公式variance  swapt=variance  notional×PVt(T)×{tT×[realize volatility(0,t)]2+T−tT×[implie volatility(t,T)]2}−strike2variance\;swap_t=variance\;notional\times PV_t\left(T\right)\times\left\{\frtT\times\left[realize;volatility\left(0,t\right)\right]^2+\frac{T-t}T\times\left[implie;volatility\left(t,T\right)\right]^2\right\}-strike^2varianceswapt​=variancenotional×PVt​(T)×{Tt​×[realizeolatility(0,t)]2+TT−t​×[implieolatility(t,T)]2}−strike2计算即可。需要注意以下两点1. 该公式是站在long position的角度,而本题问的是short position,因此注意最后的结果需要加负号2. strike,implievolatility以及realizevolatility在代入计算时,不加百分号,只取百分号前面的数字。 题目给的是 vega notion,不应该要除以(2*strike price)吗?为什么答案没有除以,而且题目也没有给strike price?

2022-04-18 00:17 1 · 回答

NO.PZ2018113001000052 $ 998,653 $ 159,228 A is correct. Volatility strike on existing sw= 20. Varianstrike on existing sw= 20^2 = 400. Variannotion= Vega notional/(2*Strike)=50000/(2*20)=1250. Realizeol(0,6)^2 = 16^2 = 256. Implieol(6,12)^2 = 19^2 = 361. PVt(T) = 1/[1 + (2.5% × 6/12)] = 0.987654 The current value of the swis VarSwapt = 1,250 × (0.987654) × [(6/12) × 256 + (6/12) × 361 – 400] = –$112,962.9263. Given thOlivia is short the varianswap, the mark-to-market value is positive for her, anit equals $112,963. 中文解析 本题考察的是对varianswap求value。 直接带入公式 variance  swapt=variance  notional×PVt(T)×{tT×[realize volatility(0,t)]2+T−tT×[implie volatility(t,T)]2}−strike2variance\;swap_t=variance\;notional\times PV_t\left(T\right)\times\left\{\frtT\times\left[realize;volatility\left(0,t\right)\right]^2+\frac{T-t}T\times\left[implie;volatility\left(t,T\right)\right]^2\right\}-strike^2varianceswapt​=variancenotional×PVt​(T)×{Tt​×[realizeolatility(0,t)]2+TT−t​×[implieolatility(t,T)]2}−strike2计算即可。 需要注意以下两点 1. 该公式是站在long position的角度,而本题问的是short position,因此注意最后的结果需要加负号 2. strike,implievolatility以及realizevolatility在代入计算时,不加百分号,只取百分号前面的数字。 算的结果是-112963, 怎么理解是盈利呢

2022-02-23 21:20 1 · 回答