为什么PV价格使用 101 而不用Call price 102呢?
谢谢
问题如下图:
选项:
A.
B.
C.
解释:
NO.PZ2016031001000078 问题如下 A bonwith 5 years remaining until maturity is currently trang for 101 per 100 of pvalue. The bonoffers a 6% coupon rate with interest paisemiannually. The bonis first callable in 3 years, anis callable after thte on coupon tes accorng to the following schele: The bons annuyielto-first-call is closest to: A.3.12%. B.6.11%. C.6.25%. C is correct.The yielto-first-call is 6.25%. Given the first call te is exactly three years away, the formula for calculating this bons yielto-first-call is:PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+⋯+PMT(1+r)5+PMT+FV(1+r)6PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\cts+\frac{PMT}{{(1+r)}^5}+\frac{PMT+FV}{{(1+r)}^6}PV=(1+r)1PMT+(1+r)2PMT+(1+r)3PMT+⋯+(1+r)5PMT+(1+r)6PMT+FV101=3(1+r)1+3(1+r)2+3(1+r)3+⋯+3(1+r)5+3+102(1+r)6101=\frac3{{(1+r)}^1}+\frac3{{(1+r)}^2}+\frac3{{(1+r)}^3}+\cts+\frac3{{(1+r)}^5}+\frac{3+102}{{(1+r)}^6}101=(1+r)13+(1+r)23+(1+r)33+⋯+(1+r)53+(1+r)63+102r = 0.03123To arrive the annualizeyielto-first-call, the semiannurate of 3.123% must multiplietwo. Therefore, the yielto-first-call is equto 3.123% × 2 = 6.25% (roun. 考点YTC解析可利用计算器N=3×2=6,PMT=3,PV= -101,FV=102,算出来I/Y=3.12,再乘2得YTC=3.12×2=6.25%,故C正确。 N为什么等于6,一共不是5年期债券吗?
NO.PZ2016031001000078问题如下A bonwith 5 years remaining until maturity is currently trang for 101 per 100 of pvalue. The bonoffers a 6% coupon rate with interest paisemiannually. The bonis first callable in 3 years, anis callable after thte on coupon tes accorng to the following schele: The bons annuyielto-first-call is closest to:A.3.12%.B.6.11%.C.6.25%. C is correct.The yielto-first-call is 6.25%. Given the first call te is exactly three years away, the formula for calculating this bons yielto-first-call is:PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+⋯+PMT(1+r)5+PMT+FV(1+r)6PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\cts+\frac{PMT}{{(1+r)}^5}+\frac{PMT+FV}{{(1+r)}^6}PV=(1+r)1PMT+(1+r)2PMT+(1+r)3PMT+⋯+(1+r)5PMT+(1+r)6PMT+FV101=3(1+r)1+3(1+r)2+3(1+r)3+⋯+3(1+r)5+3+102(1+r)6101=\frac3{{(1+r)}^1}+\frac3{{(1+r)}^2}+\frac3{{(1+r)}^3}+\cts+\frac3{{(1+r)}^5}+\frac{3+102}{{(1+r)}^6}101=(1+r)13+(1+r)23+(1+r)33+⋯+(1+r)53+(1+r)63+102r = 0.03123To arrive the annualizeyielto-first-call, the semiannurate of 3.123% must multiplietwo. Therefore, the yielto-first-call is equto 3.123% × 2 = 6.25% (roun. 考点YTC解析可利用计算器N=3×2=6,PMT=3,PV= -101,FV=102,算出来I/Y=3.12,再乘2得YTC=3.12×2=6.25%,故C正确。 为什么这里coupon是3而不是3%乘PV
NO.PZ2016031001000078 问题如下 A bonwith 5 years remaining until maturity is currently trang for 101 per 100 of pvalue. The bonoffers a 6% coupon rate with interest paisemiannually. The bonis first callable in 3 years, anis callable after thte on coupon tes accorng to the following schele: The bons annuyielto-first-call is closest to: A.3.12%. B.6.11%. C.6.25%. C is correct.The yielto-first-call is 6.25%. Given the first call te is exactly three years away, the formula for calculating this bons yielto-first-call is:PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+⋯+PMT(1+r)5+PMT+FV(1+r)6PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\cts+\frac{PMT}{{(1+r)}^5}+\frac{PMT+FV}{{(1+r)}^6}PV=(1+r)1PMT+(1+r)2PMT+(1+r)3PMT+⋯+(1+r)5PMT+(1+r)6PMT+FV101=3(1+r)1+3(1+r)2+3(1+r)3+⋯+3(1+r)5+3+102(1+r)6101=\frac3{{(1+r)}^1}+\frac3{{(1+r)}^2}+\frac3{{(1+r)}^3}+\cts+\frac3{{(1+r)}^5}+\frac{3+102}{{(1+r)}^6}101=(1+r)13+(1+r)23+(1+r)33+⋯+(1+r)53+(1+r)63+102r = 0.03123To arrive the annualizeyielto-first-call, the semiannurate of 3.123% must multiplietwo. Therefore, the yielto-first-call is equto 3.123% × 2 = 6.25% (roun. 考点YTC解析可利用计算器N=3×2=6,PMT=3,PV= -101,FV=102,算出来I/Y=3.12,再乘2得YTC=3.12×2=6.25%,故C正确。 为什么pv不是100?
我用 N=10, PMT=3, Pv=-101 fv=102 算出来 I/y= 3.056 那里出错了?
老师你好,这道题目fist to call 的时候pv不是102嚒,谢谢解答