开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

tetexe · 2020年02月11日

问一道题:NO.PZ2020010303000011

问题如下:

If the return on a stock, R, is normally distributed with a daily mean of 8%/252 and a daily variance of (20%)2>252(20\%)^2>252, find the values where

a. Pr(R < r) = .001

b. Pr(R < r) = .01

c. Pr(R < r) = .05

选项:

解释:

a. The mean is 0.031% per day and the variance is 1.58 per day (so that the standard deviation is 1.26% per day). To find these values, we transform the variable to be standard normal, so that

Pr(R<r)=.001=Pr(Z<rμσ)=.001 Pr(R < r) = .001 = Pr(Z<\frac{r-\mu}{\sigma})= .001

The value for the standard normal is -3.09

(NORM.S.INV(0.001) in Excel) so that 3.09σ+μ=3.86%-3.09 * \sigma + \mu = -3.86\%.

b. The same idea an be used here where z = -2.32 so that Pr(Z < z) = .01. Transforming this value, r=2.32σ+μ=2.89%r = -2.32 * \sigma + \mu = -2.89\%.

c. Here the value of z is -1.645 so that r=1.645σ+μ=2.04%r = -1.645 * \sigma + \mu = -2.04\%.

These are all common VaR quan-tiles and suggest that there is a 5% chance that the return would be less than -2.04% on any given day, a 1% change that it would be less than -2.89%, and a one in 1,000 chance that the return would be less than -3.86%, if returns were normally distributed.

老师,题目没看明白,能解释下吗

1 个答案

品职答疑小助手雍 · 2020年02月12日

同学你好,每个小问里可以先把标准正态分布0.001,0.01,0.05的分位点看表找到。这些数其实就是距离均值多少倍标准差

每小问找的是累计概率小于0.001,0.01,0.05的r。

第一行算出来的标准差倍数*分布的标准差再加上均值就能得到r了。

  • 1

    回答
  • 0

    关注
  • 481

    浏览
相关问题

NO.PZ2020010303000011问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.33 so thPr(Z z) = .01. Transforming this value, r=−2.33∗σ+μ=−2.89%r = -2.33 * \sigma + \mu = -2.89\%r=−2.33∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute 老师好,方差是用20%^2/252吗?这样算,得出的是方差是0.0158%,而不是1.58%。另外,20%^2大于252,能直接用20%^2除以252吗?

2024-05-27 14:22 2 · 回答

NO.PZ2020010303000011 问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.33 so thPr(Z z) = .01. Transforming this value, r=−2.33∗σ+μ=−2.89%r = -2.33 * \sigma + \mu = -2.89\%r=−2.33∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute 请问这是已知概率,反求z的取值吗?查表方式可以计算?

2024-01-15 00:20 4 · 回答

NO.PZ2020010303000011 问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.32 so thPr(Z z) = .01. Transforming this value, r=−2.32∗σ+μ=−2.89%r = -2.32 * \sigma + \mu = -2.89\%r=−2.32∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute

2022-05-17 21:52 2 · 回答

老师,这道题你了,但是我没有理解,请详细下这套题的分析过程。

2020-02-22 18:13 1 · 回答

a ily varianof (20%)²>252 怎么推出“the varianis 1.58 per y (so ththe stanrviation is 1.26% per y)”?

2020-02-15 20:01 1 · 回答