开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Jessie999 · 2020年02月08日

问一道题:NO.PZ2016062402000020

问题如下:

Consider the following linear regression model: Y=a+bX+e. Suppose a=0.05, b=1.2, SD(Y) = 0.26, and SD(e) = 0.1. What is the correlation between X and Y?

选项:

A.

0.923

B.

0.852

C.

0.701

D.

0.462

解释:

We can find the volatility of X from the variance decomposition Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e). This gives V(x)=V(y)V(e)β2=0.2620.1021.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wedge2-0.10^\wedge2}{1.2^2}=0.04. Then SD(X) = 0.2, and p=SD(X)bSD(Y)=1.2×0.20.26=0.923p=\frac{SD{(X)^\ast b}}{SD{(Y)}}=\frac{1.2\times0.2}{0.26}=0.923.

计算出x的sd之后求correlation的那个公式是哪个考点?

为什么correlation等于SD(x)*b/SD(Y)

2 个答案

品职答疑小助手雍 · 2020年02月09日

我圈的讲义里的那个公式算是最原始的定义公式了,后面你也可以自己拿式子往后推一下加深理解。

品职答疑小助手雍 · 2020年02月08日

同学你好,这个其实就是求b的公式的移项。


cov(X,Y)=ρ*SD(Y)*SD(X),分子分母同时消掉SD(X)。

Jessie999 · 2020年02月08日

还是没懂,答案中求出SD(X)后,可以求correlation(XY),但这个SD(x)*b/SD(Y)公式是怎么来的?还是说我还没看到你给的截屏那些课程所以无法理解?

SkipperLin · 2020年02月10日

我也没看到这个截屏的ppt

品职答疑小助手雍 · 2020年02月10日

emmm上面是最小二乘法的方法,考试不会考计算,也不用理解。下面我圈的公式其实就是求b1的定义式了,后面的分解和转换可以看这个回答里我手写的那个照片。

April004 · 2020年03月09日

这个讲义里没有讲到啊 需要掌握吗

品职答疑小助手雍 · 2020年03月09日

我截图的讲义里,下面那个公式是要掌握的,上面的那个不用。

  • 2

    回答
  • 3

    关注
  • 538

    浏览
相关问题

NO.PZ2016062402000020问题如下Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY?A.0.923B.0.852C.0.7010.462We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923.有点奇怪啊,看了答案也没在讲义找到,相关例题,我这个是刚学完Quant Section2 筛选题库的题看到的

2024-08-29 16:40 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. 第一步求Sx)V(y)=0.26^2 = 1.2^2 x Sx)^2 + 0.1^2Sx) = 0.2第二利用Beta公式求correlationBeta = correlation x Sy)/Sx)b = Beta = 1.21.2 = correlation x 0.26/0.2correlation = 0.923

2024-04-05 12:01 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. beta 为什么等于1.2?

2024-04-05 11:54 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. 我试着自己推了一下,不知道是不是可以把这个当成一个结论。Y = a + + ε, 因此V(Y) = (bX)^2 + V(ε), 带入得 0.26^2 = 1.2^2 * V(X) +0.1^2, 得到V(X)=0.04。Cov(X,Y)= E[(X-E(X)]*E[(Y-E(Y))], 把= a + + ε 代入,得Cov (X,Y)= E[(X-E(X)] *E(a+bX+ε - a-b*E(X)) = E[(X-E(X)] * E(X-E(X)) = b*E(X-E(X))^2 = b*V(X)所以我们得到Cov(X,Y) = b*V(X) 这个等式,代入讲义中ρ的公式两边取平方,ρ^2 = b^2 * V(X)/V(Y) = 1.2^2 * 0.04 / 0.26^2, 因此ρ = 0.923

2023-07-07 17:40 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923.

2022-05-11 20:28 1 · 回答