问题如下图:
选项:
A.
B.
C.
老师请问下20bp不应该是0.2吗,为什么答案中是0.002 解释:
NO.PZ2018123101000077 问题如下 RW bonpays 4% coupon annually. It ha maturity of three years, anit is a callable bonthcoulexercisepthe enof years 1 an2. To value ananalyze RW’s bon, Hsu uses estimateinterest rate volatility of 15% anconstructs the binomiinterest rate tree proviin Exhibit below:Rayes, a senior analyst, asks Hsu to termine the sensitivity of this callable Bonprito a 20 bps parallel shift of the benchmark yielcurve. The results of Hsu’s calculations are shown in the table below:The effective ration of RW’s callable Bonis closest to: A.0.76. B.1.88. C.3.77. B is correct.考点考察Effective ration概念解析题干条件已经给定了Benchmark yiel行移动时,债券价格的变动,当Benchmark yiel上升20bps时,债券价格为100.478,当Benchmark yiel低20bps时,债券价格为101.238;根据有效久期的公式,可得有效久期为101.238−100.4782×(0.0020)×(100.873)=1.88\frac{101.238-100.478}{2\times(0.0020)\times(100.873)}=1.882×(0.0020)×(100.873)101.238−100.478=1.88注意题干中并没有给定利率变动前的债券价格,即PV0(分母中的100.873),但是可以通过二叉树模型,计算出PV0。如下所示 对比另一个题目NO.PZ2018123101000086中的如下没有call protection perio可债券在任何时刻都可以被call回(包括零时刻),所以零时刻的价格也无法超过100如果本题没有说明可行权的时间,默认是按照期初也能行权的思路(即期初不能 100),还是期初不能行权的思路(即期初可以 100)呢?
NO.PZ2018123101000077 问题如下 RW bonpays 4% coupon annually. It ha maturity of three years, anit is a callable bonthcoulexercisepthe enof years 1 an2. To value ananalyze RW’s bon, Hsu uses estimateinterest rate volatility of 15% anconstructs the binomiinterest rate tree proviin Exhibit below:Rayes, a senior analyst, asks Hsu to termine the sensitivity of this callable Bonprito a 20 bps parallel shift of the benchmark yielcurve. The results of Hsu’s calculations are shown in the table below:The effective ration of RW’s callable Bonis closest to: A.0.76. B.1.88. C.3.77. B is correct.考点考察Effective ration概念解析题干条件已经给定了Benchmark yiel行移动时,债券价格的变动,当Benchmark yiel上升20bps时,债券价格为100.478,当Benchmark yiel低20bps时,债券价格为101.238;根据有效久期的公式,可得有效久期为101.238−100.4782×(0.0020)×(100.873)=1.88\frac{101.238-100.478}{2\times(0.0020)\times(100.873)}=1.882×(0.0020)×(100.873)101.238−100.478=1.88注意题干中并没有给定利率变动前的债券价格,即PV0(分母中的100.873),但是可以通过二叉树模型,计算出PV0。如下所示 记得一级的时候何老师就说过这个方法,这道题可以直接取均值吗?
NO.PZ2018123101000077问题如下RW bonpays 4% coupon annually. It ha maturity of three years, anit is a callable bonthcoulexercisepthe enof years 1 an2. To value ananalyze RW’s bon, Hsu uses estimateinterest rate volatility of 15% anconstructs the binomiinterest rate tree proviin Exhibit below:Rayes, a senior analyst, asks Hsu to termine the sensitivity of this callable Bonprito a 20 bps parallel shift of the benchmark yielcurve. The results of Hsu’s calculations are shown in the table below:The effective ration of RW’s callable Bonis closest to:A.0.76.B.1.88.C.3.77.B is correct.考点考察Effective ration概念解析题干条件已经给定了Benchmark yiel行移动时,债券价格的变动,当Benchmark yiel上升20bps时,债券价格为100.478,当Benchmark yiel低20bps时,债券价格为101.238;根据有效久期的公式,可得有效久期为101.238−100.4782×(0.0020)×(100.873)=1.88\frac{101.238-100.478}{2\times(0.0020)\times(100.873)}=1.882×(0.0020)×(100.873)101.238−100.478=1.88注意题干中并没有给定利率变动前的债券价格,即PV0(分母中的100.873),但是可以通过二叉树模型,计算出PV0。如下所示 请问老师,这个信息是用来构建二叉树么?这个信息是怎么用的呢?
NO.PZ2018123101000077 1.88. 3.77. B is correct. 考点考察Effective ration概念 解析 题干条件已经给定了Benchmark yiel行移动时,债券价格的变动,当Benchmark yiel上升20bps时,债券价格为100.478,当Benchmark yiel低20bps时,债券价格为101.238;根据有效久期的公式,可得有效久期为 101.238−100.4782×(0.0020)×(100.873)=1.88\frac{101.238-100.478}{2\times(0.0020)\times(100.873)}=1.882×(0.0020)×(100.873)101.238−100.478=1.88 注意题干中并没有给定利率变动前的债券价格,即PV0(分母中的100.873),但是可以通过二叉树模型,计算出PV0。 如下所示 如题, 这样计算量不是很大,可不可以约v0为p呢
NO.PZ2018123101000077 这题不同差距那么大,我大概估个100当做P0就行了吧?考试的时候不用认真来算,可以快速出答案