开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Drink H · 2020年01月16日

问一道题:NO.PZ2020010303000011 [ FRM I ]

问题如下图:

答案解析中的最后一句话怎么理解。

1 个答案

品职答疑小助手雍 · 2020年01月16日

同学你好,就是如果return服从正态分布的话,每天的收益率有5%的概率会低于-2.04%,1%的概率会低于-2.89%,千分之一的概率会低于-3.86%

  • 1

    回答
  • 0

    关注
  • 372

    浏览
相关问题

NO.PZ2020010303000011问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.33 so thPr(Z z) = .01. Transforming this value, r=−2.33∗σ+μ=−2.89%r = -2.33 * \sigma + \mu = -2.89\%r=−2.33∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute 老师好,方差是用20%^2/252吗?这样算,得出的是方差是0.0158%,而不是1.58%。另外,20%^2大于252,能直接用20%^2除以252吗?

2024-05-27 14:22 2 · 回答

NO.PZ2020010303000011 问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.33 so thPr(Z z) = .01. Transforming this value, r=−2.33∗σ+μ=−2.89%r = -2.33 * \sigma + \mu = -2.89\%r=−2.33∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute 请问这是已知概率,反求z的取值吗?查表方式可以计算?

2024-01-15 00:20 4 · 回答

NO.PZ2020010303000011 问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.32 so thPr(Z z) = .01. Transforming this value, r=−2.32∗σ+μ=−2.89%r = -2.32 * \sigma + \mu = -2.89\%r=−2.32∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute

2022-05-17 21:52 2 · 回答

老师,这道题你了,但是我没有理解,请详细下这套题的分析过程。

2020-02-22 18:13 1 · 回答

a ily varianof (20%)²>252 怎么推出“the varianis 1.58 per y (so ththe stanrviation is 1.26% per y)”?

2020-02-15 20:01 1 · 回答