开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

SkipperLin · 2020年01月16日

问一道题:NO.PZ2020010304000016

问题如下:

Suppose that the annual profit of two firms, one an incumbent (Big Firm, X1) and the other a startup (Small Firm, X2), can be described with the following probability matrix:

What are the conditional expected profit and conditional standard deviation of the profit of Big Firm when Small Firm either has no profit or loses money (X2 0)?

选项:

A.

3.01; 30.52

B.

3.01; 931

C.

1.03; 30.52

D.

1.03; 931.25

解释:

We need to compute the conditional distribution given X2 ≤ 0. The relevant rows of the probability matrix are

The conditional distribution can be constructed by summing across rows and then normalizing to sum to unity. The non-normalized sum and the normalized version are

Finally, the conditional expectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = USD 3.01M.

The conditional expectation squared is E[X1^2|X2 ≤0]=940.31, and so

the conditional variance is V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25

and the conditional standard deviation is USD 30.52M.

How to normalize the conditional distrubution

1 个答案

品职答疑小助手雍 · 2020年01月16日

同学你好,第一列那个non-normalized其实就是常规的概率,normalize其实就是求条件概率,也就是把这4个数等比例扩充到总概率等于100%就行了,假设一个扩大系数X,(5.87%+27.43%+13.5%+3.09%)*X=100%,求出来X,然后把这4个数分别乘以X就得到右边那列normalized数据了。

莫等闲2023 · 2020年01月20日

请问5.87%以及下面27.43%等数字是如何求解的?还有这道题为什么要扩充总概率到100%来做?这道题我看到的常规思路是想办法用题目中数据直接求条件期望和条件方差,算出来的数字答案没有。。。

品职答疑小助手雍 · 2020年01月22日

因为问的就是小公司亏钱或者不赚钱的条件概率,5.87%和27.43%分别是1.97%+3.9%和3.93%+23.5%的结果。总概率算条件概率其实就是贝叶斯公式,其实也就是扩充到100%啊~

  • 1

    回答
  • 0

    关注
  • 360

    浏览
相关问题

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. 如题,我这样计算出的答案S30.43

2024-03-11 17:13 1 · 回答

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. normalize好像讲义里都没提到

2024-03-03 17:25 2 · 回答

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M根据公式算出来的是1.5050,是哪里有问题吗?

2024-02-18 23:50 2 · 回答

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M.讲义sli 71关于contionexpectation的例题中,storeturn 三个概率加起来也是不到100。但是最后解contionexpectation时也是直接用题目中的概率。请问为什么这道题要Normalize?没搞懂,可以一下吗?

2024-01-17 13:14 1 · 回答

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. 本题考点为条件期望和条件标准差,涉及期望、标准差计算公式以及条件概率性质。计算步骤如下1、条件期望为 E[X1|X2 ≤0]= Σx1Pr(X1 = x1|X2 ≤0)= Σx1*[Pr(X1 = x1,X2 ≤0)/Pr(X2 ≤0)],依次带入X1取4个概率的数值计算。2、条件标准差为E[X1^2|X2 ≤0]- E[X1|X2 ≤0]^2,其中E[X1^2|X2 ≤0]=Σx1^2*Pr(X1 = x1|X2 ≤0)=Σx1^2*[Pr(X1 = x1,X2 ≤0)/Pr(X2 ≤0)];E[X1|X2 ≤0]^2为计算1的结果。想知道以上思路和计算过程是否正确;整个计算比较繁琐,容易出错,是否有更高效的计算方法?

2024-01-07 16:05 2 · 回答