开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

FrankSun · 2019年12月01日

问一道题:NO.PZ2017092702000073

问题如下:

The probability distribution for a company’s sales is:

The standard deviation of sales is closest to:

选项:

A.

$9.81 million.

B.

$12.20 million.

C.

$32.40 million.

解释:

A is correct.

The analyst must first calculate expected sales as 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expected sales, we can calculate the variance of sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The standard deviation of sales is thus σ = ($96.18)1/2 = $9.81 million.

2ND - 7 - X01=70; Y01=5 - X02=40; Y02=70 - X03=25; Y03=25 - 2ND - 8 - 2ND - ENTER(重复按这一步,直到变成1-V模式 - 往下翻 - 找到σx就是题目要我们求得标准差。


为什么算出来是18.7呢

5 个答案
已采纳答案

星星_品职助教 · 2019年12月01日

同学你好,

这个题是加权平均的形式,也就是根据概率算方差(然后再开方得到标准差)。只有算术平均的前提下才能用计算器。

所以这道题需要代方差的公式,然后算加权平均的,也就是答案解析的那种算法,括号后面的“2”是平方哈。可以自己手算一下,这种题属于比较烦但是不难的题,加油。

絮飛W涙 · 2021年04月27日

老师计算器1—v是啥意思为什么选到这个模式才可以

星星_品职助教 · 2021年04月29日

@絮飛W涙

这个的原理没有讲过,不是上课内容,固定模式,只能记忆一下了

星星_品职助教 · 2021年04月28日

@絮飛W涙

同学你好,这种计算器的模式上课没有讲过,也不要求掌握,是固定模式,如果觉得这样更方便的话直接记忆过程就可以了。

絮飛W涙 · 2021年04月29日

感觉特别方便,记是记住了,但是就想知道每个按钮都有什么区别,为什么1-v就可以,知道原理可能会记忆更深刻

絮飛W涙 · 2021年04月27日

老师计算器1—v是啥意思为什么选到这个模式才可以

郭大路 · 2019年12月26日

你按错了。

FrankSun · 2020年02月20日

我又算了一次:2ND - 7 - X01=70; Y01=5 - X02=40; Y02=70 - X03=25; Y03=25 - 2ND - 8 - 2ND - ENTER,σx还是18.708287。为什么呢?我计算器是坏的?

星星_品职助教 · 2020年02月20日

如果要这么做,步骤是:2ND - 7 - X01=70; Y01=5 - X02=40; Y02=70 - X03=25; Y03=25 - 2ND - 8 - 2ND - ENTER(重复按这一步,直到变成1-V模式 - 往下翻 - 找到σx就是题目要我们求得标准差。

FrankSun · 2020年02月25日

明白了,之前没有操作2ND - ENTER(重复按这一步,直到变成1-V模式)这一步。谢谢!

  • 5

    回答
  • 2

    关注
  • 440

    浏览
相关问题

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 1

2024-04-07 16:29 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 请问这道题目可以用金融计算器算吗

2023-10-22 22:47 1 · 回答

NO.PZ2017092702000073问题如下The probability stribution for a company’s sales is:The stanrviation of sales is closest to:A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 1.可不可以再一下为啥求均值就是求期望?2.这里的variance为啥不除以总个数?谢谢

2023-06-18 17:51 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 答案解析第二步不明白

2023-05-26 00:04 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 麻烦帮忙一下,谢谢

2022-10-02 19:09 1 · 回答