问题如下图:
选项:
A.
B.
C.
解释:
能翻译一下这道题的题干吗?看不太懂NO.PZ2015120601000008 问题如下 analyst velopetwo scenarios with respeto the recovery of $100,000 principfrom faulteloans: The amount of the expecterecovery is closest to: A.$36,400. B.$55,600. C.$63,600. C is correct.If Scenario 1 occurs, the expecterecovery is 60% ($50,000) + 40% ($30,000) = $42,000, anif Scenario 2 occurs, the expecterecovery is 90% ($80,000) + 10%($60,000) = $78,000. Weighting the probability of eascenario, the expecterecovery is 40%($42,000) + 60%($78,000) = $63,600. Alternatively, first calculating the probability of eaamount occurring, the expecterecovery is (40%)(60%)($50,000) + (40%)(40%)($30,000) + (60%)(90%)($80,000) + (60%)(10%)($60,000) = $63,600.这道题考察加权平均计算均值(expecterecovery),权重为概率。①首先算出scenario 1中的加权平均值为50,000×60%+30,000×40%=42,000;同理scenario 2中加权平均值为80,000×90%+60,000×10%=78,000.②然后再将scenario1 2做加权平均,42,000×40%+78,000×60%=63,600,选择 测试
NO.PZ2015120601000008问题如下analyst velopetwo scenarios with respeto the recovery of $100,000 principfrom faulteloans: The amount of the expecterecovery is closest to: A.$36,400.B.$55,600.C.$63,600. C is correct.If Scenario 1 occurs, the expecterecovery is 60% ($50,000) + 40% ($30,000) = $42,000, anif Scenario 2 occurs, the expecterecovery is 90% ($80,000) + 10%($60,000) = $78,000. Weighting the probability of eascenario, the expecterecovery is 40%($42,000) + 60%($78,000) = $63,600. Alternatively, first calculating the probability of eaamount occurring, the expecterecovery is (40%)(60%)($50,000) + (40%)(40%)($30,000) + (60%)(90%)($80,000) + (60%)(10%)($60,000) = $63,600.这道题考察加权平均计算均值(expecterecovery),权重为概率。①首先算出scenario 1中的加权平均值为50,000×60%+30,000×40%=42,000;同理scenario 2中加权平均值为80,000×90%+60,000×10%=78,000.②然后再将scenario1 2做加权平均,42,000×40%+78,000×60%=63,600,选择 40%*60%*50000+40%*40%*30000+60%*90%*80000+60%*10%*60000 =12000+4800+43200+36000=96000
NO.PZ2015120601000008 问题如下 analyst velopetwo scenarios with respeto the recovery of $100,000 principfrom faulteloans: The amount of the expecterecovery is closest to: A.$36,400. B.$55,600. C.$63,600. C is correct.If Scenario 1 occurs, the expecterecovery is 60% ($50,000) + 40% ($30,000) = $42,000, anif Scenario 2 occurs, the expecterecovery is 90% ($80,000) + 10%($60,000) = $78,000. Weighting the probability of eascenario, the expecterecovery is 40%($42,000) + 60%($78,000) = $63,600. Alternatively, first calculating the probability of eaamount occurring, the expecterecovery is (40%)(60%)($50,000) + (40%)(40%)($30,000) + (60%)(90%)($80,000) + (60%)(10%)($60,000) = $63,600.这道题考察加权平均计算均值(expecterecovery),权重为概率。①首先算出scenario 1中的加权平均值为50,000×60%+30,000×40%=42,000;同理scenario 2中加权平均值为80,000×90%+60,000×10%=78,000.②然后再将scenario1 2做加权平均,42,000×40%+78,000×60%=63,600,选择 100,000给了有什么作用?
NO.PZ2015120601000008问题如下analyst velopetwo scenarios with respeto the recovery of $100,000 principfrom faulteloans: The amount of the expecterecovery is closest to: A.$36,400. B.$55,600. C.$63,600. C is correct.If Scenario 1 occurs, the expecterecovery is 60% ($50,000) + 40% ($30,000) = $42,000, anif Scenario 2 occurs, the expecterecovery is 90% ($80,000) + 10%($60,000) = $78,000. Weighting the probability of eascenario, the expecterecovery is 40%($42,000) + 60%($78,000) = $63,600. Alternatively, first calculating the probability of eaamount occurring, the expecterecovery is (40%)(60%)($50,000) + (40%)(40%)($30,000) + (60%)(90%)($80,000) + (60%)(10%)($60,000) = $63,600.这道题考察加权平均计算均值(expecterecovery),权重为概率。①首先算出scenario 1中的加权平均值为50,000×60%+30,000×40%=42,000;同理scenario 2中加权平均值为80,000×90%+60,000×10%=78,000.②然后再将scenario1 2做加权平均,42,000×40%+78,000×60%=63,600,选择40%*60%*50000+40%*40%*30000+60%*90%*80000+60%*10%*20000但是算出来结果和正确答案不一样我想问下,老师上课讲例题时,算出概率的方法是用前一个条件发生的概率乘以回收金额发生的概率,但是为什么这道题就直接用回收金额乘以给出的发生概率来计算呢? 是我理解错了吗?
NO.PZ2015120601000008 这里搞不太清prob of amount (%)是不是乘以scenario后还是乘以scenario前的数字,如果这里是乘以scenario前的数字。那为什么视频中关于eps 那道题求E(EPS)直接乘以EPS?而没有再乘以probability of recession 25%? 所以视频中there is 25% of probabilty thEPS is $2 anthere is 75% of probabilty thEPS is $4 中的25% an75%代表的是已经乘以recession probability 0.25后的数字吗?还是仅仅代表乘recession probability以前的数字?如果同样如这道题是代表乘以scenario前的数字,为什么 E(EPS)不等于25%*2*25%+75%*4*25%?