开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

果儿 · 2019年11月08日

问一道题:NO.PZ2017092702000017

问题如下:

Given a stated annual interest rate of 6% compounded quarterly, the level amount that, deposited quarterly, will grow to £25,000 at the end of 10 years is closest to:

选项:

A.

£461.

B.

£474.

C.

£836.

解释:

A is correct.

To solve for an annuity (A) payment, when the future value (FV), interest rate, and number of periods is known, use the following equation:

lFV=A[(1+rsm)mN1rm]25,000=A[(1+0.064)4×1010.064]{l}FV=A{\lbrack\frac{{(1+\frac{r_s}m)}^{mN}-1}{\frac rm}\rbrack}\\25,000=A{\lbrack\frac{{(1+\frac{0.06}4)}^{4\times10}-1}{\frac{0.06}4}\rbrack}

A=460.68

为什么还要在下面除以0.06/4?

1 个答案
已采纳答案

星星_品职助教 · 2019年11月09日

同学你好,

这道题使用的是原版书上的公式,但在实际做题的时候是不会去用这种公式解的,直接按计算器就可以。这种题型的要求也是只要会用计算器计算就可以了。

如果对公式有兴趣可以看下原版书上的过程,在年金的那一章。加油。

  • 1

    回答
  • 0

    关注
  • 367

    浏览
相关问题

NO.PZ2017092702000017问题如下Given a stateannuinterest rate of 6% compounquarterly, the level amount that, positequarterly, will grow to £25,000 the enof 10 years is closest to:A.£461.B.£474.C.£836. A is correct. To solve for annuity (payment, when the future value (FV), interest rate, annumber of perio is known, use the following equation:lFV=A[(1+rsm)mN−1rm]25,000=A[(1+0.064)4×10−10.064]{l}FV=A{\lbrack\frac{{(1+\frac{r_s}m)}^{mN}-1}{\frrm}\rbrack}\\25,000=A{\lbrack\frac{{(1+\frac{0.06}4)}^{4\times10}-1}{\frac{0.06}4}\rbrack}lFV=A[mr​(1+mrs​​)mN−1​]25,000=A[40.06​(1+40.06​)4×10−1​]A=460.68计算器按法6%/4=1.5%。所以I/Y=1.5,N=10*4=40,FV=25000,PV=0,CPT PMT=-460.6775. 为什么I/Y用的不是EAR/4?

2023-07-20 19:25 1 · 回答

NO.PZ2017092702000017问题如下 Given a stateannuinterest rate of 6% compounquarterly, the level amount that, positequarterly, will grow to £25,000 the enof 10 years is closest to:A.£461.B.£474.C.£836. A is correct. To solve for annuity (payment, when the future value (FV), interest rate, annumber of perio is known, use the following equation:lFV=A[(1+rsm)mN−1rm]25,000=A[(1+0.064)4×10−10.064]{l}FV=A{\lbrack\frac{{(1+\frac{r_s}m)}^{mN}-1}{\frrm}\rbrack}\\25,000=A{\lbrack\frac{{(1+\frac{0.06}4)}^{4\times10}-1}{\frac{0.06}4}\rbrack}lFV=A[mr​(1+mrs​​)mN−1​]25,000=A[40.06​(1+40.06​)4×10−1​]A=460.68计算器按法6%/4=1.5%。所以I/Y=1.5,N=10*4=40,FV=25000,PV=0,CPT PMT=-460.6775. 题目从哪里可以看出要求的是PMT

2023-06-08 19:32 1 · 回答

NO.PZ2017092702000017 问题如下 Given a stateannuinterest rate of 6% compounquarterly, the level amount that, positequarterly, will grow to £25,000 the enof 10 years is closest to: A.£461. B.£474. C.£836. A is correct. To solve for annuity (payment, when the future value (FV), interest rate, annumber of perio is known, use the following equation:lFV=A[(1+rsm)mN−1rm]25,000=A[(1+0.064)4×10−10.064]{l}FV=A{\lbrack\frac{{(1+\frac{r_s}m)}^{mN}-1}{\frrm}\rbrack}\\25,000=A{\lbrack\frac{{(1+\frac{0.06}4)}^{4\times10}-1}{\frac{0.06}4}\rbrack}lFV=A[mr​(1+mrs​​)mN−1​]25,000=A[40.06​(1+40.06​)4×10−1​]A=460.68计算器按法6%/4=1.5%。所以I/Y=1.5,N=10*4=40,FV=25000,PV=0,CPT PMT=-460.6775. 首先我理解的题目意思是6%年化,1年4次复利,得到EAR,然后在这个EAR水平下也进行每年复利4次,10年后得到25000刀,问每年存入多少钱

2022-08-22 16:02 1 · 回答

NO.PZ2017092702000017 问题如下 Given a stateannuinterest rate of 6% compounquarterly, the level amount that, positequarterly, will grow to £25,000 the enof 10 years is closest to: A.£461. B.£474. C.£836. A is correct. To solve for annuity (payment, when the future value (FV), interest rate, annumber of perio is known, use the following equation:lFV=A[(1+rsm)mN−1rm]25,000=A[(1+0.064)4×10−10.064]{l}FV=A{\lbrack\frac{{(1+\frac{r_s}m)}^{mN}-1}{\frrm}\rbrack}\\25,000=A{\lbrack\frac{{(1+\frac{0.06}4)}^{4\times10}-1}{\frac{0.06}4}\rbrack}lFV=A[mr​(1+mrs​​)mN−1​]25,000=A[40.06​(1+40.06​)4×10−1​]A=460.68计算器按法6%/4=1.5%。所以I/Y=1.5,N=10*4=40,FV=25000,PV=0,CPT PMT=-460.6775. 老师,为什么这道题不求EAR呢?为什么我觉得用EAR除以4,才是最终计算器要带入的1/Y呢

2022-05-08 17:48 1 · 回答

NO.PZ2017092702000017 从那句话可以推断出这道题目的PV是0呢?

2021-11-16 20:38 1 · 回答