开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

🍑🍑🍑🍑🍑🍑🍑 · 2019年11月05日

问一道题:NO.PZ2016062402000020

问题如下:

Consider the following linear regression model: Y=a+bX+e. Suppose a=0.05, b=1.2, SD(Y) = 0.26, and SD(e) = 0.1. What is the correlation between X and Y?

选项:

A.

0.923

B.

0.852

C.

0.701

D.

0.462

解释:

We can find the volatility of X from the variance decomposition Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e). This gives V(x)=V(y)V(e)β2=0.2620.1021.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wedge2-0.10^\wedge2}{1.2^2}=0.04. Then SD(X) = 0.2, and p=SD(X)bSD(Y)=1.2×0.20.26=0.923p=\frac{SD{(X)^\ast b}}{SD{(Y)}}=\frac{1.2\times0.2}{0.26}=0.923.

线性回归然后左右两边同时取方差呀,这个是一种数学处理手段. 数学不好没看懂答案,麻烦详细解释下谢谢。这算是超纲题吗?考试会考吗?

3 个答案

品职答疑小助手雍 · 2021年05月11日

嗨,从没放弃的小努力你好:


是的,自变量系数beta

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

品职答疑小助手雍 · 2021年05月11日

嗨,努力学习的PZer你好:


这里的V指的是方差,不是标准差。

回归里最小二乘法的原理就是这个公式,因变量的方差等于自变量这一项(乘以beta后)的方差加上残差项方差。既然是方差beta自然是带平方的喽

----------------------------------------------
努力的时光都是限量版,加油!

Viola · 2021年05月11日

所以题目中的b其实就是beta吗

品职答疑小助手雍 · 2019年11月06日

同学你好,这题考的其实是anova那个分析表中数字的关系。

因为残差项和X肯定是相关性为0的,所以才有了答案里第一个equation。  

通过Y和残差项的标准差可以反求出b的平方*V(x),已知beta可以求出X的方差,然后是X的标准差。

R方是Y的方差里可以被b*x解释的部分,也就是b平方*V(x)/ V(y)  相关系数就拿R方开方,也就是b*SD(x)/SD(y)

Viola · 2021年05月11日

V(y)=β 2 V(x)+V(e),我想知道beta^2是怎么得来的。谢谢!

  • 3

    回答
  • 3

    关注
  • 611

    浏览
相关问题

NO.PZ2016062402000020问题如下Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY?A.0.923B.0.852C.0.7010.462We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923.有点奇怪啊,看了答案也没在讲义找到,相关例题,我这个是刚学完Quant Section2 筛选题库的题看到的

2024-08-29 16:40 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. 第一步求Sx)V(y)=0.26^2 = 1.2^2 x Sx)^2 + 0.1^2Sx) = 0.2第二利用Beta公式求correlationBeta = correlation x Sy)/Sx)b = Beta = 1.21.2 = correlation x 0.26/0.2correlation = 0.923

2024-04-05 12:01 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. beta 为什么等于1.2?

2024-04-05 11:54 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923. 我试着自己推了一下,不知道是不是可以把这个当成一个结论。Y = a + + ε, 因此V(Y) = (bX)^2 + V(ε), 带入得 0.26^2 = 1.2^2 * V(X) +0.1^2, 得到V(X)=0.04。Cov(X,Y)= E[(X-E(X)]*E[(Y-E(Y))], 把= a + + ε 代入,得Cov (X,Y)= E[(X-E(X)] *E(a+bX+ε - a-b*E(X)) = E[(X-E(X)] * E(X-E(X)) = b*E(X-E(X))^2 = b*V(X)所以我们得到Cov(X,Y) = b*V(X) 这个等式,代入讲义中ρ的公式两边取平方,ρ^2 = b^2 * V(X)/V(Y) = 1.2^2 * 0.04 / 0.26^2, 因此ρ = 0.923

2023-07-07 17:40 1 · 回答

NO.PZ2016062402000020 问题如下 Consir the following lineregression mol: Y=a+bX+e. Suppose a=0.05, b=1.2, SY) = 0.26, anSe) = 0.1. Whis the correlation between X anY? A.0.923 B.0.852 C.0.701 0.462 We cfinthe volatility of X from the variancomposition, Equation: V(y)=β2V(x)+V(e)V(y)=\beta^2V(x)+V(e)V(y)=β2V(x)+V(e). This gives V(x)=V(y)−V(e)β2=0.26∧2−0.10∧21.22=0.04V(x)=\frac{V(y)-V(e)}{\beta^2}=\frac{0.26^\wee2-0.10^\wee2}{1.2^2}=0.04V(x)=β2V(y)−V(e)​=1.220.26∧2−0.10∧2​=0.04. Then SX) = 0.2, anp=SX)∗bSY)=1.2×0.20.26=0.923p=\frac{S(X)^\ast b}}{S(Y)}}=\frac{1.2\times0.2}{0.26}=0.923p=SY)SX)∗b​=0.261.2×0.2​=0.923.

2022-05-11 20:28 1 · 回答