开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

小燕子 · 2019年10月27日

问一道题:NO.PZ2017092702000006

问题如下图:

    

选项:

A.

B.

C.

解释:


一年的天数有两种可能:365天或366天。

(1)用一年365天计算,I/Y=3%/365, FV=1,000,000, PMT=0, PV=-250,000 计算器得出n=16867.27天;n再除以365再乘以12得到月数是555

(2)用一年366天计算,I/Y=3%/366, FV=1,000,000, PMT=0, PV=-250,000 计算器得出n=16913.48天;n再除以366再乘以12得到月数是554.5

我的问题是,在真正做题时,需要分情况计算么?还是我可以默认一年365天只需要计算一次呢?

1 个答案
已采纳答案

星星_品职助教 · 2019年10月27日

同学你好,

在CFA考试里,一年的天数主要有以下的可能性:

1. 单利计息 360天。

2. 复利计息 365天

3. 实际天数 固收里算债券可能会用到,但这个往往是几个月,不足一年。

4. 交易日 250天/252天,题干会给。

这道题是算EAR,而EAR都是按照复利计息的,也就是365天。不需要考虑366这种情况。对于EAR这种默认情况,题干中不会再另行说明了,类似的例子还有衍生中的FRA产品就用360天等。对于不确定的情况,题干中会给出具体用多少天的。

  • 1

    回答
  • 5

    关注
  • 445

    浏览
相关问题

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 这题我EAR已经算出来是3.045,带入计算器知四求一不知道为什么算出来是46.21.

2023-06-02 16:31 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 不能用上面这个去试,是因为不能默认每个月30天么?谢谢

2023-05-28 15:18 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 为什么用 FVN/PV

2023-03-14 11:28 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 我直接就是计算器计算的 I/Y是3÷365 pmt=0 然后分别代入pv和fv最后求出是16867再除以三十天 是562.24

2022-11-22 02:27 3 · 回答

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months.请问这一步是什么意思,是怎么求得的46.21呢。我算到日利率为0.030453就不知道怎么往下算了

2022-11-11 06:02 3 · 回答