问题如下图请问解答步骤?
NO.PZ2017092702000162问题如下The following table shows the sample correlations between the monthly returns for four fferent mutufun anthe S P 500. The correlations are baseon 36 monthly observations. The fun are follows: Test the null hypothesis theaof these correlations, invially, is equto zero against the alternative hypothesis thit is not equto zero. Use a 5 percent significanlevel. The critict-value for n − 2 = 34 , using a 5 percent significanlevel ana two-tailetest, is 2.032. First, take the smallest correlation in the table, the correlation between Fun3 anFun4, ansee if it is significantly fferent from zero. Accong to the formula of correlaion t-test, its calculatet-value is t=1.903. This correlation is not significantly fferent from zero. If we take the next lowest correlation, between Fun2 anFun3, this correlation of 0.4156 ha calculatet-value of 2.664. So this correlation is significantly fferent from zero the 5 percent level of significance. All of the other correlations in the table (besis the 0.3102) are greater th0.4156, so they too are significantly fferent from zero.这题不是N=34吗?大于30呀,5%的significant 不是等于正负1.96吗?
NO.PZ2017092702000162 问题如下 The following table shows the sample correlations between the monthly returns for four fferent mutufun anthe S P 500. The correlations are baseon 36 monthly observations. The fun are follows: Test the null hypothesis theaof these correlations, invially, is equto zero against the alternative hypothesis thit is not equto zero. Use a 5 percent significanlevel. The critict-value for n − 2 = 34 , using a 5 percent significanlevel ana two-tailetest, is 2.032. First, take the smallest correlation in the table, the correlation between Fun3 anFun4, ansee if it is significantly fferent from zero. Accong to the formula of correlaion t-test, its calculatet-value is t=1.903. This correlation is not significantly fferent from zero. If we take the next lowest correlation, between Fun2 anFun3, this correlation of 0.4156 ha calculatet-value of 2.664. So this correlation is significantly fferent from zero the 5 percent level of significance. All of the other correlations in the table (besis the 0.3102) are greater th0.4156, so they too are significantly fferent from zero. 请问老师,前4个基金和第5个有什么区别?无论名字还是题干的描述,总觉得和前4个不一样,导致解题时候也想把第5个进行特殊考虑
NO.PZ2017092702000162问题如下The following table shows the sample correlations between the monthly returns for four fferent mutufun anthe S P 500. The correlations are baseon 36 monthly observations. The fun are follows: Test the null hypothesis theaof these correlations, invially, is equto zero against the alternative hypothesis thit is not equto zero. Use a 5 percent significanlevel. The critict-value for n − 2 = 34 , using a 5 percent significanlevel ana two-tailetest, is 2.032. First, take the smallest correlation in the table, the correlation between Fun3 anFun4, ansee if it is significantly fferent from zero. Accong to the formula of correlaion t-test, its calculatet-value is t=1.903. This correlation is not significantly fferent from zero. If we take the next lowest correlation, between Fun2 anFun3, this correlation of 0.4156 ha calculatet-value of 2.664. So this correlation is significantly fferent from zero the 5 percent level of significance. All of the other correlations in the table (besis the 0.3102) are greater th0.4156, so they too are significantly fferent from zero.用老师课上教的方法该怎么做?
NO.PZ2017092702000162 问题如下 The following table shows the sample correlations between the monthly returns for four fferent mutufun anthe S P 500. The correlations are baseon 36 monthly observations. The fun are follows: Test the null hypothesis theaof these correlations, invially, is equto zero against the alternative hypothesis thit is not equto zero. Use a 5 percent significanlevel. The critict-value for n − 2 = 34 , using a 5 percent significanlevel ana two-tailetest, is 2.032. First, take the smallest correlation in the table, the correlation between Fun3 anFun4, ansee if it is significantly fferent from zero. Accong to the formula of correlaion t-test, its calculatet-value is t=1.903. This correlation is not significantly fferent from zero. If we take the next lowest correlation, between Fun2 anFun3, this correlation of 0.4156 ha calculatet-value of 2.664. So this correlation is significantly fferent from zero the 5 percent level of significance. All of the other correlations in the table (besis the 0.3102) are greater th0.4156, so they too are significantly fferent from zero.
NO.PZ2017092702000162 问题如下 The following table shows the sample correlations between the monthly returns for four fferent mutufun anthe S P 500. The correlations are baseon 36 monthly observations. The fun are follows: Test the null hypothesis theaof these correlations, invially, is equto zero against the alternative hypothesis thit is not equto zero. Use a 5 percent significanlevel. The critict-value for n − 2 = 34 , using a 5 percent significanlevel ana two-tailetest, is 2.032. First, take the smallest correlation in the table, the correlation between Fun3 anFun4, ansee if it is significantly fferent from zero. Accong to the formula of correlaion t-test, its calculatet-value is t=1.903. This correlation is not significantly fferent from zero. If we take the next lowest correlation, between Fun2 anFun3, this correlation of 0.4156 ha calculatet-value of 2.664. So this correlation is significantly fferent from zero the 5 percent level of significance. All of the other correlations in the table (besis the 0.3102) are greater th0.4156, so they too are significantly fferent from zero. 完全没有看懂题目,为什么会选择FUN和FUN呢?看不出来最后是问什么的,是要把所有的5个基金,两两组合,分别看是否在拒绝域吗?要做10次吗?