开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

tongmopwt · 2019年10月14日

问一道题:NO.PZ2017092702000013

问题如下图:

    

选项:

A.

B.

C.

解释:


老师,可以画时间轴解释一下第二种解法吗?我怎么画都觉得是先付年金要比后付少折现一年,所以应该用15443.45/1.05

1 个答案
已采纳答案

星星_品职助教 · 2019年10月14日

同学你好,

先付年金无论是算PV还是FV,都是在对应的后付年金基础上乘以1+r,这个可以当做公式记住的。原理上课的视频有讲,可以再去听一下。

附上这道题目的时间轴如下,可以看出,10年期的先付年金的PMT其实是从0时点到9时点的 。如果作个对比,如果是后付年金的话,PMT是从1时间点到10时间点的。

那么这个时候如果在时间轴上往前延一期(红色0'点),0-9时间点的10笔PMT,就相当于一个从红色0’点开始的后付年金。这个时候如果按照后付年金的算法算PV的话,求出来的是红色0’点处的PV,但由于我们实际要求的是0时间点的PV,所以需要从红色0’往后复利一期,也就是乘以1+r。

 

tongmopwt · 2019年10月15日

明白了,谢谢老师!

  • 1

    回答
  • 2

    关注
  • 436

    浏览
相关问题

NO.PZ2017092702000013 问题如下 a 5% interest rate per yecompounannually, the present value (PV) of a 10-yeornary annuity with annupayments of $2,000 is $15,443.47. The PV of a 10-yeannuity e with the same interest rate anpayments is closest to: A.$14,708. B.$16,216. C.$17,443. B is correct. The present value of a 10-yeannuity (e with payments of $2,000 a 5% scount rate is calculatefollows: PV = $16,215.64.PV=A[1−1(1+r)Nr]+2000PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}+2000PV=A[r1−(1+r)N1​​]+2000PV=2000[1−1(1+0.05)90.05]+2000PV=2000{\lbrack\frac{1-\frac1{{(1+0.05)}^9}}{0.05}\rbrack}+2000PV=2000[0.051−(1+0.05)91​​]+2000PV = $16,215.64. Alternatively, the PV of a 10-yeannuity e is simply the PV of the ornary annuity multiplie1.05: PV = $15,443.47 × 1.05 PV = $16,215.64.无论是求PV还是FV,Annuity e的值都相当于对应期数的Ornary Annuity的值再往后复利一期。即可以先求出Ornary Annuity的PV,在乘以1+r,就是对应的Annuity e的PV。对于本题而言,Ornary Annuity的PV直接给出,所以就用给出的15,443.47*(1+0.05)即可得到对应annuity e的PV。即答案 这道题不应该先用N=10,I/Y=5,PMT=2000,PV = 15443.47 求出FV再转换成先付年金用求出来的FV算PV不是这样吗

2023-09-20 15:28 1 · 回答

NO.PZ2017092702000013 问题如下 a 5% interest rate per yecompounannually, the present value (PV) of a 10-yeornary annuity with annupayments of $2,000 is $15,443.47. The PV of a 10-yeannuity e with the same interest rate anpayments is closest to: A.$14,708. B.$16,216. C.$17,443. B is correct. The present value of a 10-yeannuity (e with payments of $2,000 a 5% scount rate is calculatefollows: PV = $16,215.64.PV=A[1−1(1+r)Nr]+2000PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}+2000PV=A[r1−(1+r)N1​​]+2000PV=2000[1−1(1+0.05)90.05]+2000PV=2000{\lbrack\frac{1-\frac1{{(1+0.05)}^9}}{0.05}\rbrack}+2000PV=2000[0.051−(1+0.05)91​​]+2000PV = $16,215.64. Alternatively, the PV of a 10-yeannuity e is simply the PV of the ornary annuity multiplie1.05: PV = $15,443.47 × 1.05 PV = $16,215.64.无论是求PV还是FV,Annuity e的值都相当于对应期数的Ornary Annuity的值再往后复利一期。即可以先求出Ornary Annuity的PV,在乘以1+r,就是对应的Annuity e的PV。对于本题而言,Ornary Annuity的PV直接给出,所以就用给出的15,443.47*(1+0.05)即可得到对应annuity e的PV。即答案 题目哪里能看出是先付年金啊?后面那个e那里就是后付年金的意思吗?所以普通年金都是先付年金?

2023-09-12 08:04 1 · 回答

NO.PZ2017092702000013问题如下 a 5% interest rate per yecompounannually, the present value (PV) of a 10-yeornary annuity with annupayments of $2,000 is $15,443.47. The PV of a 10-yeannuity e with the same interest rate anpayments is closest to:A.$14,708.B.$16,216.C.$17,443. B is correct. The present value of a 10-yeannuity (e with payments of $2,000 a 5% scount rate is calculatefollows: PV = $16,215.64.PV=A[1−1(1+r)Nr]+2000PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}+2000PV=A[r1−(1+r)N1​​]+2000PV=2000[1−1(1+0.05)90.05]+2000PV=2000{\lbrack\frac{1-\frac1{{(1+0.05)}^9}}{0.05}\rbrack}+2000PV=2000[0.051−(1+0.05)91​​]+2000PV = $16,215.64. Alternatively, the PV of a 10-yeannuity e is simply the PV of the ornary annuity multiplie1.05: PV = $15,443.47 × 1.05 PV = $16,215.64.无论是求PV还是FV,Annuity e的值都相当于对应期数的Ornary Annuity的值再往后复利一期。即可以先求出Ornary Annuity的PV,在乘以1+r,就是对应的Annuity e的PV。对于本题而言,Ornary Annuity的PV直接给出,所以就用给出的15,443.47*(1+0.05)即可得到对应annuity e的PV。即答案没有理解这题,能不能具体讲一遍

2023-09-09 16:39 1 · 回答

NO.PZ2017092702000013 问题如下 a 5% interest rate per yecompounannually, the present value (PV) of a 10-yeornary annuity with annupayments of $2,000 is $15,443.47. The PV of a 10-yeannuity e with the same interest rate anpayments is closest to: A.$14,708. B.$16,216. C.$17,443. B is correct. The present value of a 10-yeannuity (e with payments of $2,000 a 5% scount rate is calculatefollows: PV = $16,215.64.PV=A[1−1(1+r)Nr]+2000PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}+2000PV=A[r1−(1+r)N1​​]+2000PV=2000[1−1(1+0.05)90.05]+2000PV=2000{\lbrack\frac{1-\frac1{{(1+0.05)}^9}}{0.05}\rbrack}+2000PV=2000[0.051−(1+0.05)91​​]+2000PV = $16,215.64. Alternatively, the PV of a 10-yeannuity e is simply the PV of the ornary annuity multiplie1.05: PV = $15,443.47 × 1.05 PV = $16,215.64.无论是求PV还是FV,Annuity e的值都相当于对应期数的Ornary Annuity的值再往后复利一期。即可以先求出Ornary Annuity的PV,在乘以1+r,就是对应的Annuity e的PV。对于本题而言,Ornary Annuity的PV直接给出,所以就用给出的15,443.47*(1+0.05)即可得到对应annuity e的PV。即答案 CFA一级

2023-07-19 11:03 1 · 回答

NO.PZ2017092702000013问题如下a 5% interest rate per yecompounannually, the present value (PV) of a 10-yeornary annuity with annupayments of $2,000 is $15,443.47. The PV of a 10-yeannuity e with the same interest rate anpayments is closest to:A.$14,708.B.$16,216.C.$17,443. B is correct. The present value of a 10-yeannuity (e with payments of $2,000 a 5% scount rate is calculatefollows: PV = $16,215.64.PV=A[1−1(1+r)Nr]+2000PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}+2000PV=A[r1−(1+r)N1​​]+2000PV=2000[1−1(1+0.05)90.05]+2000PV=2000{\lbrack\frac{1-\frac1{{(1+0.05)}^9}}{0.05}\rbrack}+2000PV=2000[0.051−(1+0.05)91​​]+2000PV = $16,215.64. Alternatively, the PV of a 10-yeannuity e is simply the PV of the ornary annuity multiplie1.05: PV = $15,443.47 × 1.05 PV = $16,215.64.无论是求PV还是FV,Annuity e的值都相当于对应期数的Ornary Annuity的值再往后复利一期。即可以先求出Ornary Annuity的PV,在乘以1+r,就是对应的Annuity e的PV。对于本题而言,Ornary Annuity的PV直接给出,所以就用给出的15,443.47*(1+0.05)即可得到对应annuity e的PV。即答案老师,请问为什么是先付年金的PV x (1+r)呢?没太理解这个公式。谢谢

2023-06-06 11:40 1 · 回答