看不懂题目,这问的是啥
问题如下图:
选项:
A.
B.
C.
D.
解释:
NO.PZ2016062402000007问题如下 Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1=24(32−80)=2448=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1=24116−80=2436=1.5. From normtables, P(Z +1.5) = N(-1.5) = 0.0668 anP(Z -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 有快速判断的方法吗?
NO.PZ2016062402000007 问题如下 Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1=24(32−80)=2448=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1=24116−80=2436=1.5. From normtables, P(Z +1.5) = N(-1.5) = 0.0668 anP(Z -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 为什么不是用x-80/24看小于32和大于116的概率加总呢?
NO.PZ2016062402000007 Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1=24(32−80)=2448=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1=24116−80=2436=1.5. From normtables, P(Z > +1.5) = N(-1.5) = 0.0668 anP(Z < -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 技术上应该不是难事,这样体验感比较好
Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1=24(32−80)=2448=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1=24116−80=2436=1.5. From normtables, P(Z > +1.5) = N(-1.5) = 0.0668 anP(Z < -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 老师,这个考试的时候会给表吗
Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1=24(32−80)=2448=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1=24116−80=2436=1.5. From normtables, P(Z > +1.5) = N(-1.5) = 0.0668 anP(Z < -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 题目最后N(-1.5)和N(-2.0)怎么来的,应该怎么理解呢