开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

wosmomo · 2019年09月11日

问一道题:NO.PZ2016062402000007 [ FRM I ]

看不懂题目,这问的是啥

问题如下图:

选项:

A.

B.

C.

D.

解释:

1 个答案
已采纳答案

orange品职答疑助手 · 2019年09月12日

一个随机变量服从正态分布,正态分布的参数为:均值=80,标准差=24。然后问这个随机变量的取值不在 [32,116]之间的概率。

XP · 2020年04月23日

为啥最后是求出来的两个值相加啊?

  • 1

    回答
  • 0

    关注
  • 431

    浏览
相关问题

NO.PZ2016062402000007问题如下 Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1​=24(32−80)​=2448​=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1​=24116−80​=2436​=1.5. From normtables, P(Z +1.5) = N(-1.5) = 0.0668 anP(Z -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 有快速判断的方法吗?

2023-10-18 08:35 1 · 回答

NO.PZ2016062402000007 问题如下 Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1​=24(32−80)​=2448​=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1​=24116−80​=2436​=1.5. From normtables, P(Z +1.5) = N(-1.5) = 0.0668 anP(Z -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 为什么不是用x-80/24看小于32和大于116的概率加总呢?

2022-07-18 22:59 1 · 回答

NO.PZ2016062402000007 Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1​=24(32−80)​=2448​=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1​=24116−80​=2436​=1.5. From normtables, P(Z > +1.5) = N(-1.5) = 0.0668 anP(Z < -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 技术上应该不是难事,这样体验感比较好

2021-08-02 16:10 1 · 回答

Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1​=24(32−80)​=2448​=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1​=24116−80​=2436​=1.5. From normtables, P(Z > +1.5) = N(-1.5) = 0.0668 anP(Z < -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 老师,这个考试的时候会给表吗

2020-09-18 07:28 1 · 回答

Assume tha ranm variable follows a normstribution with a meof 80 ana stanrviation of 24. Whpercentage of this stribution is not between 32 an116? 4.56% 8.96% 13.36% 18.15% First convert the cutoff points of 32 an116 into stanrnormviates. The first is z1=(32−80)24=4824=−2z_1=\frac{(32-80)}{24}=\frac{48}{24}=-2z1​=24(32−80)​=2448​=−2, anthe seconis z1=116−8024=3624=1.5z_1=\frac{116-80}{24}=\frac{36}{24}=1.5z1​=24116−80​=2436​=1.5. From normtables, P(Z > +1.5) = N(-1.5) = 0.0668 anP(Z < -2.0) = N(-2.0) = 0.0228. Summing gives 8.96%. 题目最后N(-1.5)和N(-2.0)怎么来的,应该怎么理解呢

2020-09-07 08:57 1 · 回答