开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

wosmomo · 2019年09月11日

问一道题:NO.PZ2016062402000005 [ FRM I ]

C不是协方差吗,也按照方差展开?

问题如下图:

选项:

A.

B.

C.

D.

解释:

2 个答案
已采纳答案

orange品职答疑助手 · 2019年09月13日

如果讲义里有的话,那就是在协方差那一块。如果没有那就是没有了。这题本身有点拓展了,一般对大学概率论比较熟悉的是能做的;如果已经遗忘了的,我觉得真的考试也不会这样直接考。如果实在想学的话,可以去网上搜搜协方差的运算规则,也不难其实

orange品职答疑助手 · 2019年09月12日

同学你好,C选项的推导如下


wosmomo · 2019年09月12日

课程中有相应讲解吗?还是说用习题补充一下呢

  • 2

    回答
  • 3

    关注
  • 434

    浏览
相关问题

NO.PZ2016062402000005 问题如下 Given thx any are ranm variables anc anare constants, whione of the following finitions is wrong? A.E(ax+by+c)=aE(x)+bE(y)+cE{(ax+by+c)}=aE{(x)}+bE{(y)}+cE(ax+by+c)=aE(x)+bE(y)+c ,if x any are correlate B.V(ax+by+c)=V(ax+by)+cV{(ax+by+c)}=V{(ax+by)}+cV(ax+by+c)=V(ax+by)+c,if x any are correlate C.Cov(ax+by,cx+)=acV(x)+b(y)+(abc)Cov(x,y)Cov{(ax+by,cx+)}=acV{(x)}+b{(y)}+{(abc)}Cov{(x,y)}Cov(ax+by,cx+)=acV(x)+b(y)+(abc)Cov(x,y),if x any are correlate V(x−y)=V(x+y)=V(x)+V(y)V{(x-y)}=V{(x+y)}=V{(x)}+V{(y)}V(x−y)=V(x+y)=V(x)+V(y), if x any are uncorrelate Statement , it is a lineoperation. Statement C is correct, in Equation: V(Y)=σp2V(Y)=\sigma_p^2V(Y)=σp2​=∑i=1nωi2σi2+∑i=1N∑j=1,j≠iNωiωjσi,j=\sum_{i=1}^n\omega_i^2\sigma_i^2+\sum_{i=1}^N\sum_{j=1,j\neq i}^N\omega_i\omega_j\sigma_{i,j}=∑i=1n​ωi2​σi2​+∑i=1N​∑j=1,j​=iN​ωi​ωj​σi,j​=∑i=1Nωi2σi2+2∑i=1N∑j iNωiωjσi,j=\sum_{i=1}^N\omega_i^2\sigma_i^2+2\sum_{i=1}^N\sum_{j i}^N\omega_i\omega_j\sigma_{i,j}=∑i=1N​ωi2​σi2​+2∑i=1N​∑j iN​ωi​ωj​σi,j​Statement is correct, the covarianterm is zero if the variables are uncorrelate Statement B is false, aing a constant c to a variable cannot change the variance. The constant ops out because it is also in the expectation. Statement B is false, aing a constant c to a variable cannot change the variance.

2024-04-07 16:05 1 · 回答

NO.PZ2016062402000005问题如下Given thx any are ranm variables anc anare constants, whione of the following finitions is wrong?A.E(ax+by+c)=aE(x)+bE(y)+cE{(ax+by+c)}=aE{(x)}+bE{(y)}+cE(ax+by+c)=aE(x)+bE(y)+c ,if x any are correlateB.V(ax+by+c)=V(ax+by)+cV{(ax+by+c)}=V{(ax+by)}+cV(ax+by+c)=V(ax+by)+c,if x any are correlateC.Cov(ax+by,cx+)=acV(x)+b(y)+(abc)Cov(x,y)Cov{(ax+by,cx+)}=acV{(x)}+b{(y)}+{(abc)}Cov{(x,y)}Cov(ax+by,cx+)=acV(x)+b(y)+(abc)Cov(x,y),if x any are correlateV(x−y)=V(x+y)=V(x)+V(y)V{(x-y)}=V{(x+y)}=V{(x)}+V{(y)}V(x−y)=V(x+y)=V(x)+V(y), if x any are uncorrelateStatement , it is a lineoperation. Statement C is correct, in Equation: V(Y)=σp2V(Y)=\sigma_p^2V(Y)=σp2​=∑i=1nωi2σi2+∑i=1N∑j=1,j≠iNωiωjσi,j=\sum_{i=1}^n\omega_i^2\sigma_i^2+\sum_{i=1}^N\sum_{j=1,j\neq i}^N\omega_i\omega_j\sigma_{i,j}=∑i=1n​ωi2​σi2​+∑i=1N​∑j=1,j​=iN​ωi​ωj​σi,j​=∑i=1Nωi2σi2+2∑i=1N∑j iNωiωjσi,j=\sum_{i=1}^N\omega_i^2\sigma_i^2+2\sum_{i=1}^N\sum_{j i}^N\omega_i\omega_j\sigma_{i,j}=∑i=1N​ωi2​σi2​+2∑i=1N​∑j iN​ωi​ωj​σi,j​Statement is correct, the covarianterm is zero if the variables are uncorrelate Statement B is false, aing a constant c to a variable cannot change the variance. The constant ops out because it is also in the expectation.老师好,请问c是怎么推导出来的

2024-03-29 14:02 1 · 回答

NO.PZ2016062402000005 问题如下 Given thx any are ranm variables anc anare constants, whione of the following finitions is wrong? A.E(ax+by+c)=aE(x)+bE(y)+cE{(ax+by+c)}=aE{(x)}+bE{(y)}+cE(ax+by+c)=aE(x)+bE(y)+c ,if x any are correlate B.V(ax+by+c)=V(ax+by)+cV{(ax+by+c)}=V{(ax+by)}+cV(ax+by+c)=V(ax+by)+c,if x any are correlate C.Cov(ax+by,cx+)=acV(x)+b(y)+(abc)Cov(x,y)Cov{(ax+by,cx+)}=acV{(x)}+b{(y)}+{(abc)}Cov{(x,y)}Cov(ax+by,cx+)=acV(x)+b(y)+(abc)Cov(x,y),if x any are correlate V(x−y)=V(x+y)=V(x)+V(y)V{(x-y)}=V{(x+y)}=V{(x)}+V{(y)}V(x−y)=V(x+y)=V(x)+V(y), if x any are uncorrelate Statement , it is a lineoperation. Statement C is correct, in Equation: V(Y)=σp2V(Y)=\sigma_p^2V(Y)=σp2​=∑i=1nωi2σi2+∑i=1N∑j=1,j≠iNωiωjσi,j=\sum_{i=1}^n\omega_i^2\sigma_i^2+\sum_{i=1}^N\sum_{j=1,j\neq i}^N\omega_i\omega_j\sigma_{i,j}=∑i=1n​ωi2​σi2​+∑i=1N​∑j=1,j​=iN​ωi​ωj​σi,j​=∑i=1Nωi2σi2+2∑i=1N∑j iNωiωjσi,j=\sum_{i=1}^N\omega_i^2\sigma_i^2+2\sum_{i=1}^N\sum_{j i}^N\omega_i\omega_j\sigma_{i,j}=∑i=1N​ωi2​σi2​+2∑i=1N​∑j iN​ωi​ωj​σi,j​Statement is correct, the covarianterm is zero if the variables are uncorrelate Statement B is false, aing a constant c to a variable cannot change the variance. The constant ops out because it is also in the expectation. B项展开的公式是什么?这部分讲义讲的比较简单,何老师没有展开讲,做题时感觉都不会

2022-06-21 21:08 2 · 回答

NO.PZ2016062402000005 请问讲义第几页讲了相关知识

2021-12-25 15:23 1 · 回答

B的正确版本是不是Var(ax+by+c)=Var(ax+by)?

2020-03-17 14:54 1 · 回答