问题如下图:
选项:
A. 对于I的计算有点混乱。理解题目中是“按照年利率3%每天复利计息”
那就是3%/365=I?为何又算EAR?
B.
C.
解释:
星星_品职助教 · 2019年09月09日
同学你好,
你问的问题主要是对于有效年利率(EAR)的理解。这是一个非常非常重要的概念,我逐步详细的跟你说一下:
首先要理解stated annual rate和“有效”年利率(EAR)的区别。为了描述方面,以下就用名义上的年利率来代指stated annual rate,注意这里不是nominal rate的意思。
各种金融产品的期限不同,未必是正好一年,所以3个月产品其实有个3个月的对应利率,9个月产品有9个月利率,这些利率由于对应期限不同,没法相互比较。所以金融机构为了方便投资者比较,就把所有的利率都简单做了处理,都变成一年的形式,这样孰高孰低一目了然(就好比平常在银行看到的理财产品利率,明明期限不满一年,却给了个年化收益率,就是这个缘故)。处理后的利率就是名义上的年利率(stated annual rate)。
而这个处理过程就是一个直截了当的乘除关系,比如这个产品是3个月的,对应3个月的利率是1%,那么stated annual rate就是1%*4=4%。
所以如果反过来想,一个产品的名义年利率是4%,如果是按季度计息,其实一个季度的收益只有1%。
以上简单总结一句就是:利率是对应着期限的。
所以这道题里,3%是一个名义上的年利率,由于计息频率是每日计息,所以你列出来的3%/365是每日的实际利息。并且由于复利滚动的缘故,每日产生的利息会自动变成第二天的本金,所以第二日的利息要多于第一日。也就是说,如果投资者真的投资满一年,实际上获得的年利率并不是3%,而是由于利滚利的缘故要高于3%,这个投资者实际能获得的利率就是“有效”的年利率,也就是EAR。
那么EAR怎么算呢,其实就是看本息和滚动多少次,这道题里面,按日计息,相当于比如一开始投资1¥,每日利率是3%/365,那么第一天结束后本息和就会变为1*(1+3%/365),第二天结束后变为1*(1+3%/365)^2……以此类推,365天后相当于滚动了365次,就是1*(1+3%/365)^365。这个就是投资一元钱后,一年后投资者能获得的实际本息和。再扣除本金1¥,真实利息就是1*(1+3%/365)^365 – 1,如果用利息除以本金1¥得到利率,结果还是1*(1+3%/365)^365 – 1。这个就是EAR的概念,也是这道题最后答案的算法。
这也是讲义上的那个公式EAR=(1+r/m)^m – 1的来源。
因为EAR这个概念太重要了,不仅数量会考到,也是其他例如固收和衍生品计算的基础,所以我很详细的说了一遍。建议是回头多听几次EAR的视频,不要急于赶进度。觉得EAR彻底掌握后,再去多听几次R7 HPY和BEY的视频。这个知识点一定要牢牢掌握。
加油!
NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1 E= (1 + 0.03/365)365 – 1 EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 这题我EAR已经算出来是3.045,带入计算器知四求一不知道为什么算出来是46.21.
NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1 E= (1 + 0.03/365)365 – 1 EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 不能用上面这个去试,是因为不能默认每个月30天么?谢谢
NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1 E= (1 + 0.03/365)365 – 1 EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 为什么用 FVN/PV
NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1 E= (1 + 0.03/365)365 – 1 EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 我直接就是计算器计算的 I/Y是3÷365 pmt=0 然后分别代入pv和fv最后求出是16867再除以三十天 是562.24
NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1 E= (1 + 0.03/365)365 – 1 EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months.请问这一步是什么意思,是怎么求得的46.21呢。我算到日利率为0.030453就不知道怎么往下算了