问题如下图:
选项:
A.
B.
C.
解释:
请问老师,这道题为什么不能用1-P(X≤1)来做呢?但算出来结果不对。
NO.PZ2018062016000082 问题如下 The stoof Acompany ha 30% probability to rise every year, if every annutriis inpennt from eaother, the probability ththe stowill rise more th1 time in the next 3 years is: A.0.145 B.0.216 C.0.377 B is correct. Baseon the corresponng formula:p(x)=P(X=x)=(nx)px(1−p)n−xp{(x)}=P{(X=x)}={(\begin{array}{c}n\\x\enarray})}p^x{(1-p)}^{n-x}p(x)=P(X=x)=(nx)px(1−p)n−x, n = 3 anp = 0.30.p(2)=3!(3−2)!2!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189p(2)=\frac{3!}{(3-2)!2!}\times0.3^2(1-0.3)^1=\left(3\right)\left(0.09\right)\left(0.7\right)=0.189p(2)=(3−2)!2!3!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189.p(3)=3!(3−3)!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅p(3)=\frac{3!}{(3-3)!3!}\times0.3^3(1-0.3)^0=\left(1\right)\left(0.027\right)\left(1\right)=0.027\ctp(3)=(3−3)!3!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅The requireprobability is: p(2) + p(3) = 0.189 + 0.027 = 0.216 我算的是接下来3年均大于, 也就是p1+p2+p3均大于的情况, 请问这样理解为什么不对
NO.PZ2018062016000082 问题如下 The stoof Acompany ha 30% probability to rise every year, if every annutriis inpennt from eaother, the probability ththe stowill rise more th1 time in the next 3 years is: A.0.145 B.0.216 C.0.377 B is correct. Baseon the corresponng formula:p(x)=P(X=x)=(nx)px(1−p)n−xp{(x)}=P{(X=x)}={(\begin{array}{c}n\\x\enarray})}p^x{(1-p)}^{n-x}p(x)=P(X=x)=(nx)px(1−p)n−x, n = 3 anp = 0.30.p(2)=3!(3−2)!2!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189p(2)=\frac{3!}{(3-2)!2!}\times0.3^2(1-0.3)^1=\left(3\right)\left(0.09\right)\left(0.7\right)=0.189p(2)=(3−2)!2!3!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189.p(3)=3!(3−3)!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅p(3)=\frac{3!}{(3-3)!3!}\times0.3^3(1-0.3)^0=\left(1\right)\left(0.027\right)\left(1\right)=0.027\ctp(3)=(3−3)!3!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅The requireprobability is: p(2) + p(3) = 0.189 + 0.027 = 0.216 谢谢解答
NO.PZ2018062016000082问题如下The stoof Acompany ha 30% probability to rise every year, if every annutriis inpennt from eaother, the probability ththe stowill rise more th1 time in the next 3 years is:A.0.145B.0.216C.0.377B is correct. Baseon the corresponng formula:p(x)=P(X=x)=(nx)px(1−p)n−xp{(x)}=P{(X=x)}={(\begin{array}{c}n\\x\enarray})}p^x{(1-p)}^{n-x}p(x)=P(X=x)=(nx)px(1−p)n−x, n = 3 anp = 0.30.p(2)=3!(3−2)!2!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189p(2)=\frac{3!}{(3-2)!2!}\times0.3^2(1-0.3)^1=\left(3\right)\left(0.09\right)\left(0.7\right)=0.189p(2)=(3−2)!2!3!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189.p(3)=3!(3−3)!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅p(3)=\frac{3!}{(3-3)!3!}\times0.3^3(1-0.3)^0=\left(1\right)\left(0.027\right)\left(1\right)=0.027\ctp(3)=(3−3)!3!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅The requireprobability is: p(2) + p(3) = 0.189 + 0.027 = 0.216老师,本题讲解没看懂,可否帮忙再详细一下呢?
NO.PZ2018062016000082 0.216 0.377 B is correct. Baseon the corresponng formulp(x)=P(X=x)=(nx)px(1−p)n−xp{(x)}=P{(X=x)}={(\begin{array}{c}n\\x\enarray})}p^x{(1-p)}^{n-x}p(x)=P(X=x)=(nx)px(1−p)n−x, n = 3 anp = 0.30. p(2)=3!(3−2)!2!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189p(2)=\frac{3!}{(3-2)!2!}\times0.3^2(1-0.3)^1=\left(3\right)\left(0.09\right)\left(0.7\right)=0.189p(2)=(3−2)!2!3!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189. p(3)=3!(3−3)!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅p(3)=\frac{3!}{(3-3)!3!}\times0.3^3(1-0.3)^0=\left(1\right)\left(0.027\right)\left(1\right)=0.027\ctp(3)=(3−3)!3!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅ The requireprobability is: p(2) + p(3) = 0.189 + 0.027 = 0.216求解未来三年至少还有一年上涨的概率是否可以想成排出三年来一次都不上涨的概率,即1-0.7*0.7*0.7。但是这种思路算出来的结果与标准答案大相径庭,错误之处在哪里呢?
0.216 0.377 B is correct. Baseon the corresponng formulp(x)=P(X=x)=(nx)px(1−p)n−xp{(x)}=P{(X=x)}={(\begin{array}{c}n\\x\enarray})}p^x{(1-p)}^{n-x}p(x)=P(X=x)=(nx)px(1−p)n−x, n = 3 anp = 0.30. p(2)=3!(3−2)!2!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189p(2)=\frac{3!}{(3-2)!2!}\times0.3^2(1-0.3)^1=\left(3\right)\left(0.09\right)\left(0.7\right)=0.189p(2)=(3−2)!2!3!×0.32(1−0.3)1=(3)(0.09)(0.7)=0.189. p(3)=3!(3−3)!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅p(3)=\frac{3!}{(3-3)!3!}\times0.3^3(1-0.3)^0=\left(1\right)\left(0.027\right)\left(1\right)=0.027\ctp(3)=(3−3)!3!3!×0.33(1−0.3)0=(1)(0.027)(1)=0.027⋅ The requireprobability is: p(2) + p(3) = 0.189 + 0.027 = 0.216老师您好 这道题的解题思路和所运用知识点您能帮忙解决一下吗